
Professional Protection Kit MPI 2.62

March 1, 2004

Electronic Software Distribution
with the CRYPTO-BOX® –
the easy and efficient way to
control software licenses

Software Protection System

0-
01

M
A

R
04

(M
P

I_
co

ve
r.

qx
p

www.marx.com
Securing the Digital WorldSM

Inclu
ding professio

nal anti-

debugging fe
atures!

0-01MAR04_ks(PPK_MPI_Cover.qxp 3/11/2004 1:44 PM Page 1

Solutions based on the CRYPTO-BOX® System

Software protection with automatic program wrapper

Custom integration into source code via MARX API

Powerful, fast and secure encryption of applications and data

with officially approved AES/Rijndael Algorithm

Versatile document and data protection: PDF, Audio, Video, ...

Remote programming and updating via the Internet

Secure Logon for networks and web portals

License Management

All CRYPTO-BOX® hardware types integrated via

one API (MPI programmer’s interface)

www.marx.com
MARX Software Security GmbH
Vohburger Str. 68
D-85104 Wackerstein
Tel. +49 (0) 8403-92 95-0
Fax +49 (0) 8403-15 00
contact-de@marx.com

Securing the Digital WorldSM

MARX Software Security
2900 Chamblee Tucker Rd. N.E., Building 9
Atlanta, GA 30341 USA
Tel.: (+1) 770-986-8887
Fax: (+1) 770-986-8891
info@marx.com

CRYPTO-BOX USB CRYPTO-BOX Card
(PCI- and ISA-Bus)

CRYPTO-BOX
Parallel Port

CRYPTO-BOX Serial

0-01MAR04_ks(PPK_MPI_Cover.qxp 3/11/2004 1:44 PM Page 2

Dear valued customer:

We are often asked: why bother with
software protection? And why the
CRYPTO-BOX?

These questions – frequently coming
from software developers and distribu-
tors who have already suffered consid-
erable revenue losses as a result of
unprotected distribution – are justified. In many
cases, however, they are founded on prior experien-
ce with less flexible software protection solutions.

The CRYPTO-BOX changes all
that: It's your "on-site license
manager" – at the customer's
place. Reliable and uncompro-
mising, it ensures that your terms
of use are adhered to and pro-
tect your copyright over intellec-
tual property.

A modern protection system is
much more than just a line of defense. Your marke-
ting department will profit from 100% customer
registration.

Remote maintenance provides flexibility, and inde-
pendence from customs barriers and postal delivery
time. Software distribution needs digital logistics!

And not at least: The customer, too, profits greatly.
Whether through the availability of obligation-free

testing of the full application, or custo-
mized software packages. And ordered
and paid is only, what's actually needed.

Additional program options can be acti-
vated at any time, without delay, by
means of an "on-site license manager".
No need to deliver another CD or diffe-
rent protection key! This allows you to
fully exploit the advantages of ESD

(Electronic Software Distribution) and achieve a deci-
sive time advantage in the customer relationship
path.

Another interesting related fact:
At MARX, there is no additional
hardware-related charge for net-
work versions!The same afforda-
ble price applies to a standalone
installation and a 250-seat net-
work installation.

That makes the "Per Seat License"
for networks unbelievably good

value for money. And definitely more attractive than
just "printed license agreements". Or would you rat-
her be suing your customers?

This handbook will show you better alternatives.

I wish you much success with your software protec-
tion.

Yours sincerely,
Philipp Marx

Preface

Today, intelligent
software protection is not

just the one and only
effective means of license

control, but also an indispen-
sable sales, marketing
and installation tool

From Philipp Marx, Managing Director MARX Software Security

Preface

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Pref.qxp 3/11/2004 1:45 PM Page 1

For your quick start - if you are already familiar with the
CRYPTO-BOX: For Automatic protection of applications with

AutoCrypt see chapter 5.1 (page 37).
The API reference for implementation into source code can

be found in chapter 10 (page 116).

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Pref.qxp 3/11/2004 1:45 PM Page 2

ITable of contents

Copyright © 2002, 2004 MARX® CryptoTech LP

1. Software protection and distribution strategies 3

1.1 Electronic Software Distribution (ESD) – your path to success 3

1.2 Now to specifics: ESD strategies 5

1.2.1 Flexible distribution using the License Activation Wizard (LAW) 6

1.2.2 "Classic" activation using the CRYPTO-BOX® 11

1.2.3 Site License Model 13

1.2.4 Pay-per-Use or software leasing model 15

1.3 No software protection = No control over licenses! 17

1.4 Conventional software protection is inflexible 18

2. If effective license management is your goal 19

2.1 Pirated copies and multiple users result in loss of sales 19

2.2. Professional software protection secures revenue 20

2.3 Overview: Two implementation paths 21

2.4 Software protection products tailored to your requirements 22

2.4.1 CRYPTO-BOX hardware protection 23

2.4.2 Software support, license management, remote upgrades 24

2.4.3 Expertise, consulting, OEM solutions 25

3. Overview: CRYPTO-BOX Systems 27

3.1 MARX Product Selector 27

3.2 CRYPTO-BOX USB 28

3.2.1 Differences and functions of the USB models 28

3.2.2 CRYPTO-BOX USB Implementation 31

3.3 The CrypToken® 32

3.3.1 Authentication and data transfer 32

3.4 Parallel keys 32

3.4.1 CRYPTO-BOX 560/Net 32

3.4.2 CRYPTO-BOX Versa 33

3.5 Serial keys 33

3.5.1 CRYPTO-BOX Serial 33

Table of contents

0-01MAR04_ks(PPK_MPI_Content.qxp 3/11/2004 1:46 PM Page I

II Table of contents

Copyright © 2002, 2004 MARX® CryptoTech LP

4. Support, information and more … 35

4.1 Current product information and downloads on the Internet 35

4.2 Technical support - Hotline, FAQ 35

4.3 Customer-specific solutions, special models, OEM 36

4.4. Just-in-time distribution 36

4.5 Customer-specific product labeling 36

5. Fundamentals 37

5.1 The Professional Protection Kit 37

5.1.1 MPI and the TEOS Professional Protection Kit 37

5.1.2 Professional Protection Kit (PPK) Installation 38

5.1.3 Software protection with AUTO:CRYPT 41

5.1.4 AutoCrypt: Automatic software protection for EXEs/DLLs 41

5.1.5 Protecting applications using the API 56

5.1.6 Comparison of automatic vs manual implementation 57

5.2 Using MARX Data Objects 58

5.3 The MARX Programming Interface (MPI) 59

5.3.1 MPI - easy, secure and portable 59

5.3.2 MPI and the CRYPTO-BOX system 60

5.3.3 MPI in networks 60

5.4 Configuring CRYPTO-BOX 61

5.4.1 Configurable parameters of a CRYPTO-BOX 61

5.4.2 AutoCrypt Wizard and CBProg 61

5.4.3 Configuring a CRYPTO-BOX using the AutoCrypt Wizard 62

5.4.4 Configuring a CRYPTO-BOX using CBProg 63

5.5. MarxProbe - the test and diagnostic tool 64

5.5.1 Functionality 65

5.5.2 Using MarxProbe 66

5.6 License Control System and Remote Field Programming 68

5.6.1 License Control System (LCS) 68

5.6.2 Remote Field Programming (RFP) 70

5.7 Multiple Application Authorization System (MAAS) 74

0-01MAR04_ks(PPK_MPI_Content.qxp 3/11/2004 1:46 PM Page II

IIITable of contents

Copyright © 2002, 2004 MARX® CryptoTech LP

6. Components for custom-made solutions 77

6.1 Distribution of protected applications 77

6.2 Device drivers 77

6.3 CRYPTO-BOX DLL and static libraries 78

6.4 CRYPTO-BOX USB under Windows 78

6.5 CRYPTO-BOX 560/Net and Versa for the parallel port 81

6.6 CRYPTO-BOX Serial 83

6.7 CRYPTO-BOX Card 84

7. Secure distribution of digital data 85

7.1 Protection of Microsoft® Office documents 85

7.2 PDF Protection supports DRM (Digital Rights Management) 85

7.3 Security Extension for MacroMedia Director 86

7.4 HTML Security Extension 86

7.5 AudioVideo RTE™: Protection for video and audio streams 86

8. Supported Operating Systems 87

8.1 Windows XP/2000 and Me/9x 88

8.2 Support for Microsoft .NET environment 89

8.3 LINUX/ UNIX/ Solaris/ QNX 89

8.4 Macintosh / MacOS, OS/X Jaguar/Panther 90

8.5 DOS 90

8.6 Embedded Systems 90

9. Secure Integration techniques for CRYPTO-BOX modules 91

9.1 Important rules for professional software protection 91

9.2 Tips for protection against debugging 96

9.3 Protection against Disassembling 100

10. The MPI- (API-) Reference 105

10.1 MPI – Makes Network Access a Snap 106

10.2 Using MARX Data Objects 107

10.3 Where to start using the API 108

10.4 Where to find the functions of the MPI 110

0-01MAR04_ks(PPK_MPI_Content.qxp 3/11/2004 1:46 PM Page III

IV Table of contents

Copyright © 2002, 2004 MARX® CryptoTech LP

10.5 Available Function Calls 110

10.6 Return Codes of CRYPTO-BOX devices 113

10.7 Access Codes of a CRYPTO-BOX® Evaluation Kit 115

10.8 Type Declarations of MPI 115

10.9 The MARX API Reference 116

11. Appendix 173

Appendix A: Codes of a CRYPTO-BOX 173

Codes of a CRYPTO-BOX USB - and Serial Evaluation Kit 173

Codes of a CRYPTO-BOX 560/Net, Versa Evaluation Kit 174

Appendix B: Converting to Hexadecimal Numbers 175

Appendix C: Technical Data 176

Features of CRYPTO-BOX USB models 177

CRYPTO-BOX 560/Net and Versa 178

CRYPTO-BOX Serial CBS3/9-Pin 179

CRYPTO-BOX Technical Data and Overview 180

Appendix D: Supported Compilers and Applications 181

Supported Compilers (MPI based samples) 181

Supported Compilers (legacy samples) 181

Supported Applications 182

Supported Standards and Interfaces 182

Appendix E: Distributors 183

Appendix F: The AES/Rijndael algorithm 184

Appendix G: Glossary 186

Appendix H: Trademarks 191

Appendix I: Developer´s Agreement 192

Notice to users 193

12. Index 195

0-01MAR04_ks(PPK_MPI_Content.qxp 3/11/2004 1:46 PM Page IV

3ESD Software protection and distribution strategies 1.

Copyright © 2002, 2004 MARX® CryptoTech LP

1.1 Electronic Software Distribution (ESD) – your path
to success

It's finished! After endless meetings and quite a few system crashes, your new pro-
duct is finally finished, and the odds are it will be a great success. Your target mar-
ket is very diverse – you want to make a big launch on the international market.
You marketing strategy is, also, all set to go. Now all you need is a perfect distri-
bution strategy so that your "new baby" can bring in some healthy returns.

But that's the snag. You'd like to use the Internet as a distribution tool and so gain
a decisive competitive advantage. Retail business hours are not an issue for you
because your product will be available to customers 24/7 on the Internet!

Intelligent software protection using a CRYPTO-BOX key is the great software pro-
tection solution in particular for modularly designed products where each custo-
mer obtains only those components of the application that they need. But how can
efficient license management be achieved without having to constantly put toget-
her new program packages to satisfy your customer's needs?

Everybody gets what they pay for – no more, no less.
The CRYPTO-BOX system provides a solution to all these issues. Now all you need
is a full-featured version of your software. The CRYPTO-BOX key "decides" which
parts of the application can be used, so creating a tailored application bundle for
each customer requires very little effort. Do you want to limit the number of licen-
ses, i.e. the number of workstations in a network allowed to run the software con-
currently? No problem. We will configure the CRYPTO-BOX key according to your
needs. The customer will benefit from this sophisticated distribution approach. He
pays only for what he really needs.

If you are an advocate of Electronic Software Distribution, then you know that
without reliable software protection even the smartest distribution strategy
will be on a shaky foundation. We have the tools you need to implement your
individual marketing and distribution strategy.

1. Software protection and distribution strategies

We've got solutions
prepared for any distri-
bution scenario

Note

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 3

4 1. Software protection and distribution strategies ESD

Copyright © 2002, 2004 MARX® CryptoTech LP

There's more …
But that's not all! What if your customer requires a new configuration, additional
program functions or simply more licenses? The CRYPTO-BOX key can be updated
over the Internet using Remote Field Programming.

The diversity of applications of the CRYPTO-BOX system are an invaluable asset to
your marketing department because it enables promising and innovative distribu-
tion strategies to be implemented. Simply give your customers a full-featured ver-
sion of your software to evaluate so that they can convince themselves of the
benefits of your product. With the CRYPTO-BOX software protection system, you
are the boss. You determine the number of program starts or limit the evaluation
period to 30 or 60 days.

The quickest wins
Would you like to use the Internet as a sales tool and exploit the potential of this
flexible and modern sales channel, while reducing distribution and administration
costs at the same time? With the CRYPTO-BOX system, you pull all the strings. The
customer can download the application directly from your server and evaluate it.
You determine what's possible and what isn't!

Why even bother with software protection …
… I can hear some of you asking. Now be honest – would you jump from a height
of 5000 feet without a parachute? Presumably not. If you rely on the legal enfor-
ceability of your licensing rights when distributing your software, that amounts to
a "free fall".. In practice, a license agreement is often not worth the paper it's writ-
ten on. Control what your customer can do with your software with a CRYPTO-
BOX and not a piece of paper.

Therefore
The CRYPTO-BOX system opens up all manner of possibilities. For example, "clas-
sical" hardware protection where the key has to remain connected to the compu-
ter all the time for the program to run.

But the potential of the CRYPTO-BOX system doesn't end there. In contrast to con-
ventional protection devices, it can be kept continuously "up-to-date" via remote
programming. This can occur over the Internet, by sending a password, or by
phone. That's flexible Electronic Software Distribution in its purest form, allowing
you to react quickly and easily to your customer's needs. That will put you one step
ahead of the rest.

MARX ESD systems are
a perfect support tool

for your marketing and
Customer Relation

Management (CRM)
staff.

Note

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 4

5ESD Software protection and distribution strategies 1.

Copyright © 2002, 2004 MARX® CryptoTech LP

But that's not all the advantages of direct distribution. It also reduces costs.
Shipping costs and customs duty no longer apply. Another side benefit: As soon as
a customer contacts you to order an update or additional products, you receive reli-
able data on their needs and requirements. That's indispensable "fodder" for your
marketing department and Customer Relation Management team. Only those who
keep their finger on the pulse of their market and know their customer's require-
ments can look with confidence into the future of their business.

1.2 Now to specifics: ESD strategies

The Internet, as a distribution tool, opens up revolutionary new possibilities for
software vendors who wish to practice Electronic Software Distribution.

The benefits of online distribution are obvious:
• Your application is available for downloading 24 hours a day, 7 days a week,

with no interruptions or delays in the path of your customer. Marketing experts
know that that's the key to B2C and B2B!

• The cost aspects are positive too: Your workload will sink dramatically. Thanks
to automation, streamlining of your ordering and shipping process can be
achieved - even for updates.

• There's more: You will be able to react flexibly and quickly to customer needs.
Tailored solutions and services can be delivered with ease. As a result, customer
satisfaction will grow. That gives you a decisive competitive advantage.

• With a smart strategy in place, your after-sales service can achieve considerable
follow-up sales with a minimum of effort.

• The customer benefits from direct distribution. Updates are always just one
mouse click away, and queries are handled promptly.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 5

6 1. Software protection and distribution strategies LAW

Copyright © 2002, 2004 MARX® CryptoTech LP

Where to from here?
The facts speak for themselves. We can offer you a suitable solution for any distri-
bution scenario; typical activation by means of a CRYPTO-BOX hardware key, a
software-based protection solution for vendors who sell large quantities, and tai-
lored options for niche markets. Thanks to MARX's new License Activation
Technology and the innovative License Activation Wizard (LAW), all options are
available to you. You can integrate the LAW into your application, combine it with
the CRYPTO-BOX system or operate progressive license management over the
Internet.

1.2.1 Flexible distribution using the License Activation
Wizard (LAW)

The License Activation Wizard (LAW) is a professional and reliable distribution tool
that offers unbeatable value for the money, and it is an ideal tool for vendors who
wish to sell applications over the Internet.

But that by no means exhausts the LAW's potential. A hardware-based distribution
strategy, that can react flexibly and quickly to customer requirements, can also be
implemented easily using the LAW.

And the LAW is extremely easy to use. During the software installation on the end
user's PC, the LAW creates a hardware-specific identification code (PC-ID). If, after
an optional evaluation period, the prospect decides to purchase the software, an
automated process transfers this "identifier" to the vendor. The vendor then trans-
mits to the customer's PC an activation code that will allow the application to be
activated. This ties the program to the end-user's PC so that it will only run on that
PC.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 6

7LAW Software protection and distribution strategies 1.

Copyright © 2002, 2004 MARX® CryptoTech LP

Your big advantage in using LAW: A profitable approach is often to distribute
a "base package" - usually low-priced and aimed at "novices" - via the LAW and
downloading over the Internet. If a customer goes on to purchase additional pro-
gram options sold on a modular basis, or a professional version of the program,
that purchase will always be accompanied by a CRYPTO-BOX. The CRYPTO-BOX is
the "on-site license manager” - remotely programmable and uncompromising. So
every additional license will guarantee more revenue!

• Your product is available around the clock. With just a few mouse clicks, custo-
mers can conveniently download your software from the Internet for evalua-
tion purposes.

• You can react with lightning speed to new market requirements.
• Flexible marketing strategies are easy to implement.
• Customers can make a no-obligation evaluation of the capabilities of your pro-

duct.
• The probability of follow-on sales is much larger because the inhibition thres-

hold towards carrying out a quick, low-cost update is considerably lower.
• Customer problems can be solved with little effort. Customer satisfaction

grows.
• Control over all licenses. The customer needs to contact you; this provides you

with reliable data about your customer base, which is essential for future mar-
keting strategies to be a success.

• The CRYPTO-BOX system will round off your marketing options. It offers the
optimum solution - whether it be for USB, parallel or serial interfaces.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 7

8 1. Software protection and distribution strategies LAW

Copyright © 2002, 2004 MARX® CryptoTech LP

Phase I (1st step): Download and installation of evaluation version

Vendor Customer

Downloads the software
from the web and installs it

Makes the software
available for download

Homepage
of the vendor

Up-Front-Version Download

Figure 1.1
LAW

1st step

The diagram illustrates the diverse applications of the License Activation Wizard. If
your preference is for software-based protection, then the following scenario is
conceivable: Simply make available on your homepage an application that the
customer can easily download and install ("Up-Front-Version Download").

Important: The software will not run until it is installed.
After successful installation, in which you can incorporate a registration step if your
marketing strategy requires it, the software is ready to be evaluated. You determi-
ne for how long (e.g. 30 days) or how often, and with which functionality, the
customer can run your application.

The customer can try
the software over an

evaluation period (e.g.
30 days). During instal-
lation, the downloaded
version is bound to the

customer PC.

Note

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 8

9LAW Software protection and distribution strategies 1.

Copyright © 2002, 2004 MARX® CryptoTech LP

Figure 1.2
LAW
2nd step

Up-Front-Version Activated
Phase I (2nd step): Activation after expiry of the evaluation period

License-Activation-Server

Convenient activation of the application via online registration over the
Internet (this ties the software to the customer's PC)

Customer
Customer receives a full-featu-

red version of the software

Once the evaluation period has expired, the customer must make a decision. If he
wants to purchase the software, then he must activate it to be able to use the full
functionality of the program (Up-Front-Version Activated). After successful (online)
registration, the vendor supplies the customer with a special activation code, eit-
her online, by phone or by fax. This provides you with reliable data about your
customer base, which is essential for future marketing strategies to be a success.
After activation, the software is activated and tied to the PC, that is, the customer
has access to the full functionality of your application but can only use it on this
computer.
The licensing process could end at this point.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 9

10 1. Software protection and distribution strategies LAW

Copyright © 2002, 2004 MARX® CryptoTech LP

Up-Front-Version Final Activation

Phase II (optional): Final activation using the CRYPTO-BOX key
After successful "Initial Activation"

Vendor Customer

Sends the CRYPTO-BOX® key to the customer
The CRYPTO-BOX® key overwrites the software activation

"Upgrade" to the
"final full-featured
version" with speci-
al features by
means of CRYPTO-
BOX activation.

Figure 1.3
LAW

The License Activation Wizard has even more tricks up its sleeve. It also enables you
to easily implement marketing strategies with an emphasis on hardware-based
protection. After successful activation by the customer, it would be possible, for
example, for him to have a "version with full functionality" but not be able to
upgrade it. Alternatively, the customer might only be able to use limited functions
of a modular application bundle.

Final activation of all functions occurs by sending a service release pack that inclu-
des a CRYPTO-BOX hardware key. The CRYPTO-BOX key overwrites the previous
software activation.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 10

11CRYPTO-BOX Software protection and distribution strategies 1.

Copyright © 2002, 2004 MARX® CryptoTech LP

1.2.2 "Classic" activation using the CRYPTO-BOX

The CRYPTO-BOX Software Protection System provides the answer to your urgent
questions concerning software distribution and license management.

With the CRYPTO-BOX system, you have everything under control:
• You determine the number of workstations in the network on which your

application can run.

• If desired, you can set an expiration date, an execution, or a time limit on your
programs use.

• Remote programming simplifies the distribution of updates and follow-up
business (e.g. additional licenses), and the costs involved are negligible!

• A single CRYPTO-BOX key can protect several applications. An entire network
can be protected by a single CRYPTO-BOX key, and no hardware surcharge
applies!

• Your marketing department benefits as well: You will obtain reliable customer
data and be able to recognize market requirements early, thereby improving
market information to assist your long term marketing strategies.

Only achievable with
hardware protection:
Ship your software
package on a single CD,
regardless of how much
functionality it contains
and which functions the
customer has ordered.
The on-site
CRYPTO-BOX, which
you have preconfigured
appropriately, determi-
nes which components
your customer may use.
You can change the pro-
gramming at any time
via the Internet to suit
the changing require-
ments of your customer.
The CRYPTO-BOX solu-
tion simplifies your
distribution.

Note

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 11

12 1. Software protection and distribution strategies CRYPTO-BOX

Copyright © 2002, 2004 MARX® CryptoTech LP

Figure 1.4
A typical example of
a smart ESD strategy
- implemented with

the CRYPTO-BOX key

Software vendor Customer

Software Vendor Customer

Downloads software Provides software for
downloading

Sends CRYPTO-BOX® key to the customer

Vendor’s Homepage

Evaluation
period, e.g.
30 days

Activation of full-
featured version
using the
CRYPTO-BOX key

Using the CRYPTO-BOX system as a marketing tool allows you to design a flexible
marketing strategy. You provide software that the customer can easily download
from a website and install. You determine how long, how often, and with what
functions, the customer runs your application.

At the end of the evaluation period, the customer needs to make a decision. If he
buys the application, you send him a CRYPTO-BOX hardware key to convert the
software to a full-featured version.
Further advantage: This allows mobile use of the application, e.g. on a laptop, but
only if the CRYPTO-BOX key is connected.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 12

13

Copyright © 2002, 2004 MARX® CryptoTech LP

Site Licensing Software protection and distribution strategies 1.

1.2.3 Site License Model

Ideal for companies, departments, organisations

The CRYPTO-BOX system offers a perfect distribution solution for software vendors
who supply modular programs to companies or company departments.

The CRYPTO-BOX acts as a license container, i.e., a fixed number of licenses are
programmed into the CRYPTO-BOX memory. The customer can install the software
on multiple workstations in the network, as required. There is also an option where
the customer can activate as many licenses as he wants over a specified period -
e.g. for one year.

The CRYPTO-BOX system provides absolute flexibility:
• You can react to specific customer requirements. You provide the customer

with an agreed number of licenses. The customer only pays for what he really
needs, and you can offer your product at a competitive price. An unbeatable
argument for your marketing department.

• Lucrative follow-up business can be conducted with minimal effort via Remote
Field Programming (RFP). Does the customer require additional licenses or an
update? No problem. The CRYPTO-BOX's memory can easily be programmed
remotely via the Internet. No more costly on-site "maintenance work".

• Expensive mailing campaigns become a thing of the past. Customs duty and
shipping costs are reduced significantly. The customer is no longer required to
return the hardware key

• The CRYPTO-BOX can also be used in networks (TCP/IP or Novell). This is done
by connecting the CRYPTO-BOX key to a PC or server on the network and
starting the CRYPTO-BOX Server. The number of licenses per network can be
set using the optional License Control System tool (available on the CBU XS,
CBS, and CBN keys). One CRYPTO-BOX per network is all that's needed.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 13

14 1. Software protection and distribution strategies Site Licensing

Copyright © 2002, 2004 MARX® CryptoTech LP

Workstation

Vendor Large customer

Workstation

Workstation

Workstation

Workstation

CRYPTO-BOX® with defined
number of licenses

Figure 1.5
This diagram shows a

CRYPTO-BOX being
used as a "License

Container" in a "Site
Licensing" scenario.

The diagram illustrates the applications of a CRYPTO-BOX system that is being
used as a distribution tool by a vendor who supplies large customers or specific
company departments. For example, if a company orders 50 single-seat licenses
you send them a single CRYPTO-BOX. The memory of the hardware key acts as a
"License Container"

The customer can now utilize the 50 licenses in a flexible manner. If he needs addi-
tional licenses - no problem! You can perform the update conveniently from your
computer by means of Remote Field Programming. No more after-sales deliveries
or maintenance is required.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 14

15Pay-per-Use Software protection and distribution strategies 1.

Copyright © 2002, 2004 MARX® CryptoTech LP

1.2.4 Pay-per-Use or software leasing model

In the TV broadcasting arena it's already commonplace: If a customer wants to see
a particular program, he must pay to do so. The same can apply to software distri-
bution. Rather than paying for the application, he pays for the number of program
starts, for the amount of time he uses the software, or for the functionality that he
works with. In short: Intensive users pay more.

A leasing model such as this places particularly high demands on the protection
scheme is obvious. To guarantee fair invoicing, the data must be absolutely safe
against tampering. Should the process ever be cracked, the product is as good as
"dead". To prevent this from happening, install an execution counter in the memo-
ry of the CRYPTO-BOX.

This distribution model opens up many promising possibilities for the ven-
dor:
• The application doesn't need to be purchased, so only usage charges arise, the

purchasing barrier for the customer is very low.
• Discount schemes for frequent users increases the "purchase incentive".
• Ongoing application updates increase customer satisfaction and turnover.
• The "account" is easily transferable. Follow-up business is increased.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 15

16 1. Software protection and distribution strategies Pay-per-Use

Copyright © 2002, 2004 MARX® CryptoTech LP

Software
vendor

Customer
pays for usage

Provides the software and a
CRYPTO-BOX®

Remote invoicing (CRYPTO-BOX®

counter is transmitted)

Per line of print
30 Cent

Per daily
settlement 30 €

Per annual
settlement 1250 €

For each time a
parts list is

generated 5 €

The diagram illustrates a possible Pay-per-Use distribution model. You send the
customer your software and a CRYPTO-BOX. The application will only run if the
CRYPTO-BOX is connected to the customer's computer.

The advantage for the customer: He pays only for what he uses, or the number of
program starts. The "usage profile" is stored in the CRYPTO-BOX key's memory.
At the end of the month the CRYPTO-BOX's counter value is transmitted to you -
secure and fast via the Internet. This guarantees fair invoicing.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 16

17Software protection and distribution strategies 1.

Copyright © 2002, 2004 MARX® CryptoTech LP

1.3 No software protection = No control over licenses!

Those vendors who sell large numbers of applications are faced with the same
dilemma again and again: "How do I secure my returns without driving up the
price of my software by implementing an expensive license protection solution?".
Experience shows that business software, in particular, is often a popular "target"
because of the difficulty of restricting the number of users on a network.

"Buy once, copy many times", as they say. Software pirating is regarded as a petty
offense - a petty offense that will cost you dearly. Besides lost additional revenue
from the purchase of additional licenses, your marketing department's work suf-
fers as well. Registration is subject to the good will of the purchaser and so relia-
ble customer data is not available. Your long-term marketing strategy stands on
shaky ground from the outset, and so too the future of your company. This illu-
strates that the legal solution, i.e. a license agreement, is a blunt weapon in the
fight against software piracy. A long-winded lawsuit with an uncertain outcome is
very costly, and besides, who wants to sue their own customers?

The gaming industry in particular can tell you a thing or two about the other side
of the coin. Many products when launched on the market are immediately outda-
ted because the copy protection has already been cracked by "fan communities".
But even the supposed beneficiaries, the end-users, are faced with disadvantages.
As soon as they open the packaging, they are required to buy the product. A no-
obligation evaluation is not possible. That can drive even honest people toward
piracy.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 17

18 1. Software protection and distribution strategies

Copyright © 2002, 2004 MARX® CryptoTech LP

1.4 Conventional software protection is inflexible

If you choose a conventional protection method, you could be backing yourself
into a corner over the long term. You may well be protecting your software against
piracy, but it won't support a state-of-the-art marketing strategy or allow control
of the distribution of your product. The fact is: simple license protection is inflexi-
ble.

Thanks to the CRYPTO-BOX Software Protection System, we can offer you a ready-
made solution for any scenario, from software-based protection schemes right
through to a pure hardware implementation. All variants have one thing in com-
mon however: Licenses can be updated at any time via Remote Programming over
the Internet. You can authorize additional seats in a network or activate further
features of the program, and so react quickly and flexibly to your customer's needs
while saving costs.

0-01MAR04_ks(PPK_MPI_Ch1_intro.qxp 3/11/2004 1:59 PM Page 18

19Pirated copies License management 2.

Copyright © 2002, 2004 MARX® CryptoTech LP

2.1 Pirated copies and multiple users result in loss of
sales

Nobody knows it better than you. The distribution of unprotected software means:

• Reduced sales

• Lower profits

• Smaller budget for research and development

• Customers often buy just one copy, but use it umpteen times

• No control over circulation

• No control over usage in a network

• No protection in a number of countries

• Lower number of updates sold

Unauthorized copying of software is much more than just a "petty offense". It has
a negative impact on research and development and sales because it significantly
curtails your returns and profits.

What disadvantages result from the international distribution of unpro-
tected products?

The fact is: Pirated copies lead to considerable loss of revenue when distributing
internationally. In the worst case scenario, a single pirated copy of a program will
be enough to render your new software product obsolete in a particular market
segment.

2. If effective license management is your goal

To put an effective license management plan into action, reliable software
protection is essential. In this chapter we will present our wide range of pro-
ducts which offer a suitable solution for every protection and distribution
strategy.

0-01MAR04_ks(PPK_MPI_Ch2.qxp 3/11/2004 1:59 PM Page 19

20 2. License management Professional software protection

Copyright © 2002, 2004 MARX® CryptoTech LP

Experienced international software vendors know that strong copy protection is an
effective distribution tool for curtailing the damage caused by software piracy.
Customers choose the CRYPTO-BOX whenever a truly reliable, hardware-based
copy protection solution is required.

2.2. Professional software protection secures revenue

The CRYPTO-BOX – Your guide in insecure markets
Only by protecting your software you, can guarantee that every single user has
paid for your software and your intellectual property. Not to mention follow-up
sales resulting from license updates. Thanks to the Remote Programming capabili-
ty of the CRYPTO-BOX solution, you can react quickly and flexibly to your custo-
mer's needs and keep shipping and administration costs to a minimum.

Furthermore, every purchaser is required to register, at least when it comes to
obtaining updates, which is an invaluable advantage for your marketing depart-
ment! This is the only way to obtain the data that is essential for a long-term com-
pany strategy. All these advantages are unimaginable without protection.

You know…
Written agreements and licenses are not sufficient to prevent unauthorized use of
your product. Furthermore, to enforce them you would need to sue your own
customers! Using the CRYPTO-BOX system, contract violations or license abuses
simply won't occur.

The advantages for software manufacturers:
• All users pay for the software
• You know who your customers are
• Every customer is registered. An enormous marketing advantage!
• Your support service is only accessed by paying customers
• Secure demo versions; available 24 hours, 7 days a week via Internet downlo-

ad!
• Updates - only to authorized users - ensure a constant revenue stream
• Controlled usage in networks

0-01MAR04_ks(PPK_MPI_Ch2.qxp 3/11/2004 1:59 PM Page 20

21License management 2.

Copyright © 2002, 2004 MARX® CryptoTech LP

• Every additional license means more revenue
• Secure (remote) upgrades and remote activation
• Not only programs, but also whole databases can be protected
• Fast protection using Auto:Crypt - no source code required
• Support for all compilers
• Virus and tampering recognition
• Professional anti-debug functions and protection against disassembly
• Checksum and hash functions

2.3 Overview: Two implementation paths

The PPK (Professional Protection Kit) features the MARX Programming Interface
(MPI). It incorporates all products "under one roof" and enables our customers to
communicate with a variety of protection devices and products using the same
functional calls and commands! Using MPI, expensive adaptation of different pro-
tection devices to different computer interfaces is no longer required. Furthermore,
it supports all commonly used crypt-algorithms, including AES/Rijndael, RSA,
MD4/5, Blowfish, IDEA and conventional hash algorithms.

Executable files can be protected in a snap using the AutoCrypt Wizard, which is
intuitive to use, even for beginners. You install the PPK, start the AutoCrypt Wizard
and then select the desired protection options: With just a few mouse clicks you
can limit the number of program starts by means of an execution counter, set an
expiration date, or prompt the user to enter an additional password at program
startup.

The large - programmable on-the-fly - memory of each CRYPTO-BOX or CrypToken
key gives the option of storing a large variety of data, thereby increasing the level
of security even more:

Benefits of the large CRYPTO-BOX memory - ideal for storing:
• Whole program segments
• Pointers and vectors - without which the program will not run
• Installation information
• Configuration of the customer's hardware
• Serial numbers and customer-specific data

MARX products are
always state-of-the-art.
Our R&D departments
participate in the soft-
ware beta testing pro-
grams of Microsoft and
many other vendors!

Note

0-01MAR04_ks(PPK_MPI_Ch2.qxp 3/11/2004 1:59 PM Page 21

22 2. License management Software protection

Copyright © 2002, 2004 MARX® CryptoTech LP

For current prices and
descriptions, see our

product catalogs at
www.marx.com.

Figure 2.1
CRYPTO-BOX with up to

64Kbyte of memory

Note

• Checksums: Tampering recognition!
• Recognition of virus attacks on EXE or DLL files
• MAAS protection system for multiple applications per individual device
• Important configuration data for your application
• Keys and X.509 certificates

Extensive compiler and operating system support
With several hundred libraries, ActiveX objects, DLLs, etc. available, our R&D
department ensures that you receive the required support for your favorite compi-
ler.

2.4 Software protection products tailored to your
requirements

Hardware-based keys – external
The CRYPTO-BOX system is comprised of several hardware variations:

For a USB interface:
• CRYPTO-BOX USB XS - the shortest USB key on the market. But with the

AES/Rijndael algorithm implemented fully in hardware.
• CRYPTO-BOX USB XL - with True White Noise Generator for random numbers

The CRYPTO-BOX supports Windows XP / 2000, NT4, Me/98 as well as MacOS and
Linux / Unix / Solaris.

0-01MAR04_ks(PPK_MPI_Ch2.qxp 3/11/2004 1:59 PM Page 22

23CRYPTO-BOX hardware protection License management 2.

Copyright © 2002, 2004 MARX® CryptoTech LP

Figure 2.2
Parallel CRYPTO-BOX
Figure 2.3
Serial CRYPTO-BOX

For a parallel interface
• CRYPTO-BOX 560/Net - key for stand-alone or networked PCs; remote pro-

gramming, 560 Bytes of memory
• CRYPTO-BOX Versa - Ideal for stand-alone PCs; remote programming, 64 Bytes

of memory

For an RS232 serial interface
• Ideal for Linux/Unix, Windows and special environments, 4KBytes of memory,

compatible with the CRYPTO-BOX

2.4.1 CRYPTO-BOX hardware protection

Hardware-based keys - internal
• Crypto-Card PCI: With or without integrated CRYPTO-BOX
• Crypto-Card ISA: Similar to the "PCI" model, but for older PCs

Typical applications for the CRYPTO-BOX Card models:
• Where there is a risk of external keys being stolen (schools, department stores,

computers in public places),
• To accommodate several keys inside the PC (including those of other manufac-

turers).

Figure 2.4
Crypto-Card

For information on the
CRYPTO-BOX extension
card, see the CB-Card
documentation which is
available separately or
visit us at
www.marx.com.

Note

0-01MAR04_ks(PPK_MPI_Ch2.qxp 3/11/2004 1:59 PM Page 23

2.4.2 Software support, license management, remote
upgrades

LCS® License Control System (only available with CRYPTO-BOX USB XS/XL
and 560/Net parallel)
• The License Control System (LCS) can be used to set the maximum number of

computers in a network on which a certain application is allowed to run con-
currently.

• Can be used in conjunction with the CRYPTO-BOX USB and 560/Net models.

RFP - Remote Field Programming
• Enables secure, remote programming of the memory contents and the freely

programmable ID codes (passwords) of a CRYPTO-BOX.

• An ideal tool for activating program components, installing upgrades or upda-
ting arbitrary components of the CRYPTO-BOX at the customer site.

MAAS – Multiple Application Authorization System
• Allows multiple applications to be protected by a single key.

• Can be used to individually restrict the usage of a certain program. You can
specify an expiration date, or a counter-based limit on the number of progra-
starts.

• Ideal for use in conjunction with LCS.

24 2. License management Remote upgrades

Copyright © 2002, 2004 MARX® CryptoTech LP

Figure 2.5

0-01MAR04_ks(PPK_MPI_Ch2.qxp 3/11/2004 1:59 PM Page 24

25OEM solutions License management 2.

Copyright © 2002, 2004 MARX® CryptoTech LP

2.4.3 Expertise, consulting, OEM solutions

On request, we can put together for you a comprehensive package – if
necessary tailored to your individual requirements:

• Customer-specific development for non-standard environments

• OEM solutions, casing in company colors or with embossed logo

• Even development of complex hardware solutions: Our developers make "the
impossible possible"!

Take advantage of our expertise and experience. Why not give us a call!

0-01MAR04_ks(PPK_MPI_Ch2.qxp 3/11/2004 1:59 PM Page 25

26 2. License management

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Ch2.qxp 3/11/2004 1:59 PM Page 26

27Overview CRYPTO-BOX systems 3.

Copyright © 2002, 2004 MARX® CryptoTech LP

3.1 MARX Product Selector

The MARX Product Selector offers a quick overview of our products. Detailed
descriptions of the products, and examples, are provided in later sections of this
user manual.

3. Overview: CRYPTO-BOX Systems

On the following pages we will describe our products and provide you with a
decision making tool to enable you to select a suitable CRYPTO-BOX solution
for your marketing strategy.

Figure 3.1
MARX Product Selector

P
K

I,
X

50
9

Product Selector Hardware
Securing the Digital World SM

Software protection and
license management

CrypToken ®

Secure encryption key container

sof
tw

ar
e

an
d

d
at

a
p

ro
te

ct
io

n

O
E

M

CRYPTO-BOX ®

USB XS (short)

USB XL: with
noise generator

Versa

 CRYPTO-BOX®

560/Net

CB-Card PCI

CB-Card ISA

CRYPTO-BOX®

Serial

USB

U
SB

U
SB

U
S
B

RS
23

2
P

S

(WIN, MacIntosh,
Linux)

Parallel (WIN)

Serial RS232
+ "Non-Intel"

Software-based
protection without
hardware

XL: with
noisegenerator

"with 2-factor-
authentication"

"The unified MPI
programming
interface makes
it easy!"

USB Versa

CrypToken XS (short)

LAW
Licence Activation Wizard

S
P

P
P

P
RS

23
2

US
B

U
S
B

U
S
B

A
cc

es
s

co
n

tr
o

l

lic
en

se
 m

an
ag

em
en

t

ap
p

lic
at

io
n

s

0-01MAR04_ks(PPK_MPI_Ch3.qxp 3/11/2004 2:00 PM Page 27

28 3. Overview CRYPTO-BOX systems CRYPTO-BOX USB

Copyright © 2002, 2004 MARX® CryptoTech LP

Now available: The first
hardware key imple-

mentation of the
AES/Rijndael algorithm,

"True Physical Noise
Generator" and RSA
support (key length:

2048 Bit)! And up to 64
KByte of memory. The
CRYPTO-BOX USB sup-

ports Windows XP,
Windows 2000, NT4 and

ME/98, as well as
MacOS and Linux.

Note

3.2 CRYPTO-BOX USB

This hardware key offers all the functions you need for reliable plug-n-play soft-
ware protection on an USB interface. It can be integrated seamlessly by means of
the MARX Programming Interface (MPI) libraries.

3.2.1 Differences and functions of the USB models

The CRYPTO-BOX USB is available in three different versions:

• CRYPTO-BOX USB Versa (CBU/VS): The model with all the important software
protection functions but with more than just the base features. The table
below provides an overview of the features of the CRYPTO-BOX. It is the shor-
test USB key in the world - so small that it fits easily into a laptop carry bag.

• CRYPTO-BOX USB XS (CBU/XS). The model with the same short casing, but
with more functions for software and data protection. Optionally available with
up to 64 KByte of memory.

• CRYPTO-BOX USB XL (CBU/XL). This model offers the maximum number of
security functions. The true white noise generator (hardware implementation)
guarantees additional security. The USB XS and XL models contain a software
implementation of the RSA algorithm.

0-01MAR04_ks(PPK_MPI_Ch3.qxp 3/11/2004 2:00 PM Page 28

29Overview CRYPTO-BOX systems 3.

Copyright © 2002, 2004 MARX® CryptoTech LP

Table 3.4.
Overview

Figure 3.2
CBU XS and
Figure 3.3,
CBU XL

Product examples (also available with OEM casing):

The most important features of the CRYPTO-BOX USB models:

• On-board encryption of data by means of the Rijndael algorithm (Advanced
Encryption Standard (AES), official successor to the DES algorithm) with a key
of length 16 Bytes that never leaves the hardware platform, in OFB bit-stream
cipher mode (Output Feedback Mode)

• The software-based authentication method supports the RSA standard (key
length: 2048 Bits)

• Access control (PIN-based)
• Every CRYPTO-BOX USB (except USB Versa) is assigned its own unique serial

number
• CRYPTO-BOX USB XL with integrated True Physical Noise Generator (random

number generator, used for the purpose of key generation)
• Encrypted EEPROM with 4 KByte of on-board memory (up to 64 KByte availa-

ble on request)
• Reliable communication and key identification ("on the fly" when plugged

in/unplugged)

Type
CRYPTO-BOX® CRYPTO-BOX® CRYPTO-BOX®

USB Versa USB XS USB XL

Short description U/VS U/XS U/XL

special feature Shortest USB key True White Noise
on the market! Generator

Ideal for notebook-
and laptop users.

Microprocessor + + +

Unique serial
+ +number

True white noise
+generator

Length approx. 17 mm approx. 17 mm approx. 27 mm

0-01MAR04_ks(PPK_MPI_Ch3.qxp 3/11/2004 2:00 PM Page 29

30 3. Overview CRYPTO-BOX systems

Copyright © 2002, 2004 MARX® CryptoTech LP

Extra features:
• Metal casing - effective protection against incoming and outgoing radiation
• Unique serial number (XS and XL models)

Applications of the CRYPTO-BOX USB:
• Software and data protection

When you purchase the CRYPTO-BOX USB XL, you are getting a product which
offers the highest level of protection available. The integrated True Physical Noise
Generator fulfills a frequently voiced request of software developers - the gene-
ration of non-computable and non-sequential random numbers.

The CRYPTO-BOX models support officially certified/recommended public algo-
rithms, in particular AES/Rijndael and RSA (XS and XL models). The algorithms are
generally regarded as undecryptable by means of realistic computing power (1040).

The user can decide whether he wishes to use the integrated True Physical Noise
Generator to generate keys and passwords, or to define his own sequences.

Thanks to the high data throughput of the stream cipher mode (the most effecti-
ve implementation of the Rijndael algorithm) and the high transfer rates of the USB
interface, this hardware key gives users the ability to encrypt large data packets.

On account of its large internal memory (up to 64 KBytes), the CRYPTO-BOX USB
can be utilized as a secure, portable storage medium for sensitive data.

MARX customers can either use the pre-programmed keys and passwords (16 Byte
each and preset by MARX) or generate his own codes. When own codes are used,
only the customer can access encrypted data.

Secure memory - TOKEY™ Secure Password Manager
The secure memory of the CRYPTO-BOX USB key makes it highly versatile. You can
store customer names and/or copyright information as text in the key, which is
then displayed within your application.

Safeguard important constants used in calculations performed by your program.

TOKEY Secure Password Manager provides a good example of how the secure
memory of the CRYPTO-BOX USB/CrypToken USB key can be used. This small tool

0-01MAR04_ks(PPK_MPI_Ch3.qxp 3/11/2004 2:00 PM Page 30

31Implemantation Overview CRYPTO-BOX systems 3.

Copyright © 2002, 2004 MARX® CryptoTech LP

manages your passwords and PIN numbers by storing them in the CBU/CT memo-
ry and safeguarding them against unauthorized access or viruses! You can find the
"Secure Password Manager" in the \SPO directory of the MARX PPK CD-ROM.

3.2.2 CRYPTO-BOX USB Implementation

The CRYPTO-BOX USB provides a set of passwords that are either predefined (allo-
cated by MARX) or programmable on-the-fly by MARX customers. Fixed passwords
guarantee that the hardware key is unique for each MARX customer. User-defined
passwords ensure that only the software vendor/distributor has full knowledge
about accessing the CRYPTO-BOX. The validation of all passwords occurs within
the firmware in the form of parameters to API functions.

All keys, initialization vectors and passwords are 16 Bytes long and are implemen-
ted within the hardware, which means they never leave the CRYPTO-BOX hard-
ware after they have been set. There is no firmware-based means of extracting
these elements from the key. The generation of preprogrammed passwords and
keys is assisted by the integrated True White Noise Generator which guarantees
that only non-sequential number sequences are produced. The user can decide
whether he wishes to use these components or define his own sequences.

0-01MAR04_ks(PPK_MPI_Ch3.qxp 3/11/2004 2:00 PM Page 31

32 3. Overview CRYPTO-BOX systems CrypToken

Copyright © 2002, 2004 MARX® CryptoTech LP

3.3 The CrypToken®

The functions integrated into the CrypToken
• Secure storage of passwords, certificates, digital signatures and lots more

• A hash function

• Digital signature

• Virus and tampering recognition

• Two-factor authentication

3.3.1 Authentication and data transfer

For more information on this subject, see the CrypToken user manual, which is
available separately, or visit us at www.marx.com.

3.4 Parallel keys

3.4.1 CRYPTO-BOX 560/Net

The CRYPTO-BOX 560/Net key is designed to be used on either a stand-alone
computer or a Novell, NetBIOS or TCP/IP network. If your application is running in
a LAN, you can configure the number of concurrent users and only one CRYPTO-
BOX 560/Net is needed on the server.

Features of the CRYPTO-BOX 560/Net
• Equipped with an 8-bit secure microprocessor

• Supports Windows XP, Windows 2000/NT, Me/9x, 3.1x, DOS and OS/2

• 576 Bytes of user memory, 483 bytes of which are programmable on-the-fly

• AES and IDEA crypt-algorithm

For more information
about the CrypToken,

see the CrypToken user
manual, which is availa-

ble separately, or visit
www.marx.com.

Note

0-01MAR04_ks(PPK_MPI_Ch3.qxp 3/11/2004 2:00 PM Page 32

33Overview CRYPTO-BOX systems 3.

Copyright © 2002, 2004 MARX® CryptoTech LP

• Two separate memory areas with access codes that can be programmed on-
the-fly

• Eight ID codes, each 5 bytes long, five of which are programmable on-the-fly

3.4.2 CRYPTO-BOX Versa

The CRYPTO-BOX Versa key is the most popular key among programmers who
need high level security, but not the network capabilities of a product like the
CRYPTO-BOX 560/Net.

Features of the CRYPTO-BOX Versa
• Equipped with an 8-bit secure microprocessor

• Supports Windows XP, Windows 2000/NT, Me/9x, 3x, DOS and OS/2

• 64 Bytes of user memory, 50 bytes of which are programmable on-the-fly

• IDEA crypt-algorithm

• Two separate memory areas with access codes that can be programmed on-
the-fly

• Four ID codes, each 5 bytes long, two of which are programmable on-the-fly

3.5 Serial keys

3.5.1 CRYPTO-BOX Serial

The CRYPTO-BOX Serial key is an ideal distribution tool for software applications
running on PC or UNIX platforms because it provides full control over the license
management of your software.

This model supports similar features to the CRYPTO-BOX USB and can be accessed
via the MPI.

0-01MAR04_ks(PPK_MPI_Ch3.qxp 3/11/2004 2:00 PM Page 33

34 3. Overview CRYPTO-BOX systems

Copyright © 2002, 2004 MARX® CryptoTech LP

Features of the CRYPTO-BOX Serial
• 9 Pin/9 Pin connector

• Adaptable to any RS232 and RS423 compatible system

• Supports Windows XP, Windows 2000/NT, Me/98 and Linux/UNIX

• Support for other platforms available on request

• 4 KBytes of user memory, up to 64KB if required

• AES/Rijndael crypt-algorithm

Figure 3.3
CRYPTO-BOX Serial

0-01MAR04_ks(PPK_MPI_Ch3.qxp 3/11/2004 2:00 PM Page 34

35Service 4.

Copyright © 2002, 2004 MARX® CryptoTech LP

We know that hardware is not everything! That's why we offer a comprehensive
service that includes, amongst other things, the following: Internet downloads of
new software versions, hotline support for programmers and fast delivery. On
request, we can also supply customized models with individualized company logos,
adhesive labels or overprinting, etc. So your Corporate Design will get a showing
too!

4.1 Current product information and downloads on
the Internet

On our website www.marx.com, you'll find online price lists for our entire product
range and up-to-date information on protecting software using the CRYPTO-BOX
system. We also provide free software upgrades for the CRYPTO-BOX. Product
information and complete user manuals are also available for downloading.

4.2 Technical support - Hotline, FAQ

MARX offers prompt technical support

In North America:
• Phone support is available by calling 1-770-986-8887
• Fax us your question to 1-770-986-8891
• You can reach us by e-mail at support@marx.com

In Europe and worldwide:
• Phone support is available by calling +49(0) 8403-92950
• Fax us your question to +49(0) 8403-1500
• You can reach us by e-mail at support-de@marx.com

4. Support, information and more …

Whether it's a missing driver CD, a hardware problem, or the need for custo-
mized barcodes printed on your CRYPTO-BOX: This is your "first port of call" -
and we respond promptly.

0-01MAR04_ks(PPK_MPI_Ch4.qxp 3/11/2004 2:01 PM Page 35

36 4. Service Support

Copyright © 2002, 2004 MARX® CryptoTech LP

4.3 Customer-specific solutions, special models, OEM

Our hardware and software components can, in many cases, be customized to
your particular requirements. Options, and terms and conditions, are available on
request.

4.4. Just-in-time distribution

Just-in-time distribution allows you to profit from low storage costs. In addition to
our fast delivery service, we can also fill orders the same day we receive them.
Orders received before 10 a.m. (CET) can usually be shipped on the same day (with
the exception of custom-made products and during holidays).

4.5 Customer-specific product labeling

Custom labeling provides you with more flexibility when distributing your product
together with the CRYPTO-BOX. It allows quick identification in your distribution
chain (e.g. by a scanner) or at the customer site. MARX offers a wide range of pos-
sibilities: from labeling with a data matrix code (2D-barcode; see Figure 4.1) or seri-
al numbers, laser printing, right through to adhesive labels or overprinting. Just ask
us - we would be happy to provide a quote.

Figure 4.1
and Figure 4.2

Data Matrix Code (l.)
and Serial number (r.)

0-01MAR04_ks(PPK_MPI_Ch4.qxp 3/11/2004 2:01 PM Page 36

37Software Developer’s Kit Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

5.1 The Professional Protection Kit

5.1.1 MPI and the TEOS Professional Protection Kit

MPI enables you to communicate with any CRYPTO-BOX model via a common pro-
gramming interface. This makes it quick and easy to switch from one CRYPTO-BOX
type to another, or to implement multiple CRYPTO-BOX models at a time. MPI sup-
ports all features of the CRYPTO-BOX system you need to produce secure soft-
ware and data protection solutions:
• License control by means of a CRYPTO-BOX installed locally or on the network,
• Choice of automatic (no programming knowledge required) or manual imple-

mentation of the CRYPTO-BOX protection system,
• Utilization of the internal memory and the hardware-based encryption func-

tions of the CRYPTO-BOX,
• Easy creation of data objects for licensing options such as expiration days, expi-

ration date or execution counter,
• Remote maintenance.

TEOS (Token Embedded Operating System), a new "operating system" speci-
ally tailored to the features of the CRYPTO-BOX USB, is also available. TEOS allows
you to run several applications concurrently and independently on a single securi-
ty token. This is achieved through intelligent file management and a sophisticated
programming interface.

A variety of applications can profit from TEOS with no programming at all.
Besides having an "encrypted partition" on the hard drive, you can also run a
Single Sign-On system for Windows and a password manager simultaneously.

Note

5. Fundamentals

On the following pages we will show you just how simple and easy it is to
implement our products.

The PPK CD is suitable
for use under Windows
XP, Windows 2000/NT4
and Me/98. You will
need administrator
rights to install the
Software Developer's
Kit under Windows XP,
Windows 2000 or NT4.
Support for MacOS is
also included on the
PPK CD (for more infor-
mation, see the file
'mac user.txt' in the top
directory of the CD).
Support is also availa-
ble for DOS and Linux:
Our technical support
(see Page 35) will be
happy to help you furt-
her.

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 37

38 5. Fundamentals Professional Protection Kit

Copyright © 2002, 2004 MARX® CryptoTech LP

Multiple applications can access the CRYPTO-BOX internal memory concurrent-
ly without conflicts arising. Each application is assigned its own partition and can-
not access memory areas that are already reserved for another application. The
memory can be partitioned as needed by the developer; the relevant tool is supp-
lied with the TEOS Developer Kit.

Furthermore, TEOS allows different access hierarchies to be defined, like free
access, user access or administrator access.
The generation of AES/Rijndael private keys within the CRYPTO-BOX USB can
occur directly via API functions. A convenience for software developers is that the
same function calls are used under Windows, Linux and Mac OS, which means
minimal porting costs to other platforms. These is also the option to create RSA
keys via a software driver.
TEOS, when used in conjunction with a CRYPTO-BOX as a security token, offers a
modern, cost-effective and powerful alternative to SmartCards. The key feature of
TEOS is its versatility in supporting a large variety of applications.

For more information about TEOS, visit us at www.marx.com, or refer to the
TEOS Developer’s Kit, which is available separately.

5.1.2 Professional Protection Kit (PPK) Installation

The CRYPTO-BOX Developer's Kit contains all the necessary hardware and soft-
ware to implement a software protection system based on the CRYPTO-BOX:
• A CRYPTO-BOX programmed with demo codes
• A user manual with a complete reference of all available functions (also availa-

ble in PDF format on the CD)
• An installation CD containing protection and configuration tools and libraries

for Windows, MacOS and Novell NetWare

To install the software (Important: Do not attach the CRYPTO-BOX to your
PC at this time!):

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 38

39Software Developer’s Kit Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

The installation program comes with a user-friendly graphical interface. Insert the
PPK CD into your CD-ROM drive. On Windows, the CD will autorun and the menu
shown bellow will appear.

If the MARX setup program is not started automatically from the CD, click RUN in
the Windows START menu and enter: x:\setup.exe (where "x" is the drive letter
of your CD-ROM-drive).

On Windows, a device driver must be installed before any communication with the
CRYPTO-BOX can be established. Click "Evaluate CRYPTO-BOX Software
Protection System" to install the Professional Protection Kit (PPK) for your
type of CRYPTO-BOX - this will automatically install the required driver. For more
information about the driver installation, and how to install the device driver on
your customer's PC, see Section 6.1 "Distributing protected applications" (page
77).

Figure 5.2
PPK-Installation

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 39

40 5. Fundamentals AUTO-CRYPT

Copyright © 2002, 2004 MARX® CryptoTech LP

After installing the PPK, we recommend that you start the Control Center which
provides an overview of the PPK components and their function. Now plug the
CRYPTO-BOX that delivered with your Evaluation Kit into the appropriate port (USB
or parallel or serial).

Parallel port (CRYPTO-BOX 560/Net or Versa):
• Plug the CRYPTO-BOX into the parallel port of your PC - you can start using it

immediately.

USB port (CRYPTO-BOX USB):
• Plug the key into the USB port of your PC
• The Windows Hardware Wizard appears
• Click Next to start the automatic driver installation
• Windows locates the driver and installs it automatically
• On Windows XP/ 2000/ NT4, you won't need to restart the computer after

installation of the driver

Important note for Windows XP users:
In the Windows XP Hardware Wizard, Microsoft have added a new dialog box that
may be confusing (see next page). Please disregard this message. The CRYPTO-
BOX USB/CrypToken driver has been tested and is compatible with Windows XP.
Click "Continue anyway" to proceed with the driver installation.

Figure 5.3.
PPK Control Center

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 40

41AutoCrypt Wizard Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

5.1.3 Software protection with AUTO:CRYPT

The CRYPTO-BOX provides two methods for protecting your software:
• The AUTO:CRYPT module (a component of the AutoCrypt Wizard) is used for

automatic protection of 32-bit Windows applications.
• A high level API (Application Programming Interface) allows you to manually

implement the protection system by means of 25 easy-to-call CRYPTO-BOX
functions.

5.1.4 AutoCrypt: Automatic software protection for
EXEs/DLLs

The AutoCrypt Wizard is a user-friendly software protection tool. In the following
sections we will describe how to use the AutoCrypt Wizard with the CRYPTO-BOX
USB.
The AutoCrypt Wizard can be used with all currently available MARX products.

Automatic protection of applications
The powerful AUTO:CRYPT tool, a component of the AutoCrypt Wizard, provi-
des an intuitive-to-use environment for fast implementation of software protection
systems. AUTO:CRYPT provides the easiest and fastest means to protect a 32-bit

16-Bit Windows applica-
tions can be protected
using the
CRYPTO-WIZARD Rel.
2.19 (CRYPTO-BOX
560/Net and Versa
only), which is available
on request.

Note

Figure 5.4.
Hardware Installation

Click here

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 41

42 5. Fundamentals AutoCrypt Wizard

Copyright © 2002, 2004 MARX® CryptoTech LP

Windows program without accessing or modifying its source code. AUTO:CRYPT
wraps your program in a binary protection shell and injects code into the applica-
tion for further security.

The AUTO:CRYPT method is particularly suitable for standard software, where the
source code is not available. If no CRYPTO-BOX is connected to the computer, the
program will not run and will display a user-defined message.

The AutoCrypt Wizard is installed so that all passwords are initialized correctly
within the hardware configuration profile for Evaluation CRYPTO-BOX. To reinitia-
lize the AutoCrypt Wizard for use with your customer-specific CRYPTO-BOX,
import the hardware configuration profile supplied with the CRYPTO-BOX you
received from MARX.

Selecting an AutoCrypt project
The AutoCrypt Wizard uses projects to manage your implementation of various
automatic protection options or mechanisms for a CRYPTO-BOX. You can use an
existing project or create a new one.

To create a new project
Start the AutoCrypt Wizard (Start/Programs/MARX Software Security/Professional
Protection Kit MPI/Tools), and choose whether you want an animated assistant to
be displayed (the assistant is only available under Windows XP/ 2000).

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 42

Click Next to proceed to the Select project screen. The following screen appears:

• Either select an existing AutoCrypt project or create a new one.

• If you chose to create a new project, you also need to select the project type
(Autoprotection of application (local), Autoprotection of application (network)
or Data objects programming).

• Click Next to continue.

43AutoCrypt Wizard Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

If you still do not have
a hardware configura-
tion profile (.MRX file)
for your customer-speci-
fic CRYPTO-BOX, please
call or email us and we
will send it to you. The
advantage of the hard-
ware profile is that it
prevents you from
entering the required ID
codes manually.

Note

Figure 5.5.
Project selection screen

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 43

44 5. Fundamentals AutoCrypt Wizard

Copyright © 2002, 2004 MARX® CryptoTech LP

Selecting a hardware configuration profile
To select or import a hardware configuration profile:

• The hardware configuration profile (.mrx file) contains the fixed passwords and
ID codes (encrypted), which are needed to access your CRYPTO-BOX. MARX
will supply a suitable hardware configuration profile for your customer-specific
CRYPTO-BOX. Import a hardware configuration profile by choosing "Import"
or drag and drop it on the screen using the mouse.

• If you have a CRYPTO-BOX Evaluation Kit, select a suitable profile for your
CRYPTO-BOX from the list. For example, for the CRYPTO-BOX USB you would
select the profile CBU_Demo. All passwords will now be initialized with the
values of a standard CRYPTO-BOX USB (CBU) Evaluation Kit.

• All passwords will be initialized with suitable values for the particular type of
CRYPTO-BOX included in your evaluation kit.

for the CRYPTO-BOX USB select CBU_Demo

for the CRYPTO-BOX 560/Net select CBN_Demo

for the CRYPTO-BOX Serial select CBS_Demo

for the Smartcard (SX7) select SX7_Demo

click Next

Table 5.1
Hardware configuration

profile.

Tip

If you need help for a
particular option, sim-

ply move the mouse
pointer over the option
to display some expla-

natory text.

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 44

45AutoCrypt Wizard Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

The following figure provides an overview of which MARX applications are able to
use the .MRX hardware configuration profile.

Figure 5.6
Applications

Production layer (MARX)

Customer (software vendor)

Database

AutoCrypt
Wizard

RFP MAAS CBProg CBEdit

CRYPTO-BOX®

production done by MARX

Hardware profile
(MRX file)

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 45

46 5. Fundamentals AutoCrypt Wizard

Copyright © 2002, 2004 MARX® CryptoTech LP

Selecting a hardware configuration profile in the AutoCrypt Wizard:

Click Next to continue.

Figure 5.7
Hardware profile

selection

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 46

47AutoCrypt Wizard Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

Configuring the CBNET Server
This screen appears if you have selected the project type Autoprotection of
application (network).

Either accept the default settings (adequate in most cases) or specify your own
custom settings (CBNET server name/IP address and TCP/IP port being used).

For instructions on using the CBNet Server, see "Network license management and
limiting users" in the PPK Control Center.

Click Next to continue.

Note

If you want to protect
applications in a net-
work, please make sure
that your CRYPTO-BOX
contains enough net-
work licenses! For more
information, see
"Configurable parame-
ters of a CRYPTO-BOX"
in Section 5.4.1

Figure 5.8
CBNET server
configuration

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 47

48 5. Fundamentals AutoCrypt Wizard

Copyright © 2002, 2004 MARX® CryptoTech LP

Selecting the application to be protected
This screen appears if you have selected the project type Autoprotection of appli-
cation (local or network).

The Select file screen is used to specify which program is to be protected, and a
name for the protected program. To prevent confusion, you should ensure that you
choose different names for the original and protected application. You can also
select an application number. This numbers specifies a location in the CRYPTO-BOX
memory and is required if you want to protect more than one application using the
CRYPTO-BOX. The default value is 1. If you do want to protect more than one
application, please also enter the total number of applications to be protected.

Click Next.

Figure 5.9
File selection

Tip

Activate the "Compress
protected application"

option to take advanta-
ge of the powerful

compression and
encryption functions of
the AutoCrypt Wizard.

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 48

49AutoCrypt Wizard Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

Selecting the protection options (data objects)
The Dataobjects option in the tree structure on the left hand side of the screen is
used to configure your chosen protection scheme. The data objects and protection
options displayed depend on the project type you have selected.

"Data objects programming" project
The following data objects will be available: Memory object, Execution counter,
Expiration date, Expiration days and Expiration time. They can be stored in
the CRYPTO-BOX memory at a user-specified offset value.

Figure 5.10
"Data objects program-
ming" project

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 49

50 5. Fundamentals AutoCrypt Wizard

Copyright © 2002, 2004 MARX® CryptoTech LP

"Autoprotection of application (local)" project
The following data objects will be available: Execution counter, Expiration date, File
authenticity and Password check. You can also use the Periodic check option to
check for the presence of the CRYPTO-BOX at regular intervals.

The “Expiration time
option” is only availa-

ble if you have also
selected the “Periodic

check option”.

Note

The Encrypt protected
application using

AES/Rijndael option is
only available if you

have previously selec-
ted the Compress pro-

tected application
option (see page 48).

Note

Tip

The "Encryption", "File
authenticity" and

"Debugger recognition"
options provide com-

prehensive protection
against hacker or virus

attacks on your applica-
tion.

Figure 5.11
Autoprotection of appli-

cation (local)

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 50

51AutoCrypt Wizard Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

"Autoprotection of application (network)" project
The following data objects will be available: File authenticity and Password
check. You can also use the Periodic check option to check for the presence of the
CRYPTO-BOX at regular intervals.

Tip

The "Encryption", "File
authenticity" and
"Debugger detection"
options provide com-
prehensive protection
against hacker or virus
attacks on your applica-
tion.

Figure 5.12
Autoprotection of appli-
cation (network)

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 51

52 5. Fundamentals AutoCrypt Wizard

Copyright © 2002, 2004 MARX® CryptoTech LP

AUTO:CRYPT features a powerful compression method and a "Total
FILE:CRYPT Feature" with SECURE COMPRESS!
The compression rate of up to 50% dramatically reduces the size of your exe files
- the advantages: easier storage, delivery and installation.

Protection against tampering, object code patching and unauthorized modification
of your software.

Original file (extract) After SECURE COMPRESS

Figure 5.13
Secure Compress

Figure 5.14
Screen shows how to

select the
SecureCompress

feature.

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 52

53AutoCrypt Wizard Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

Defining your passwords

The Hardware check option initializes the passwords of the CRYPTO-BOX
system. If you select the ID2 checkbox, the specified values will be programmed
into the CRYPTO-BOX. AUTO:CRYPT checks these value, configures the CRYPTO-
BOX and injects all the selected ID codes into the protected program.

Tip

This option can be used
in a "Data objects pro-
gramming" project to
modify the freely pro-
grammable ID codes of
a CRYPTO-BOX! For
more information about
programming
CRYPTO-BOX, see
Section 5.4.1
"Configurable parame-
ters of a CRYPTO-BOX".

Figure 5.15
Defining passwords

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 53

54 5. Fundamentals AutoCrypt Wizard

Copyright © 2002, 2004 MARX® CryptoTech LP

Defining the protection dialogs
The Dialogs option is used to configure the error and status dialog boxes to your
needs. The messages displayed when a protected application is running can be
easily edited by means of the fields on the right hand side.

Click Next to see a summary of the selected protection options, then click Next
again to proceed.

Configuring the hardware key and protecting the application
Click Configure hardware to store your selected values in the CRYPTO-BOX.

Figure 5.16
Defining the protection

dialogs

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 54

55AutoCrypt Wizard Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

For Autoprotection (local or network) projects, choose Protect application to
activate the software protection for the application. The protected application and
a CRYPTO-BOX library are copied into the destination directory. Next click Save
signature to save an application signature in the CRYPTO-BOX memory.

You can now use this program together with the CRYPTO-BOX on another com-
puter by copying the protected application and the CRYPTO-BOX library "acwm-
pi32.dll" to the target computer. By default, AutoCrypt saves this library to the
same directory as the protected application.

In order for the protected program to run correctly, the CRYPTO-BOX device dri-
vers need to be installed also. The easiest way to install the necessary drivers is to
use the CRYPTO-BOX installation program (cbsetup.exe). For further information,
see the readme file of the CRYPTO-BOX PPK or the "Driver installation and dia-
gnostic tools" entry in the PPK Control Center.

The AutoCrypt Wizard
is continuously being
extended with additio-
nal functions and data
objects. Visit our websi-
te (www.marx.com)
regularly to check for
updates.

Keep in mind the
restrictions imposed by
the File authenticity
option - for example, if
you have set the option
to check the file path.

Note

Note

Figure 5.17
Selecting the protection
options and dialogs

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 55

56 5. Fundamentals protection by API

Copyright © 2002, 2004 MARX® CryptoTech LP

5.1.5 Protecting applications using the API

General overview
This implementation method via a programming interface is used when you want
links directly into the source code. If you only want to get acquainted with the
functionality of a CRYPTO-BOX, choose MPI DEMO which shows you all the fea-
tures of the key. You will find this program under "Demos, Tools, Utilities" in the
PPK Control Center. The MPI demonstration program, which only works if an eva-
luation key is connected to the computer, will assist you in learning about the ID
codes, the memory, or the integrated algorithmic functions of a CRYPTO-BOX. We
recommend that you familiarize yourself with the various options of the
CRYPTO-BOX system before integrating it into your program.

In-depth evaluation
Install the CRYPTO-BOX API for your favorite compiler. During the installation, a
subdirectory is created containing an object file or library and a demo source code
written in your compiler's programming language. This source code contains calls
to all available functions the microprocessor can execute. A batch file or make
file is also included to compile and link the demo program. You will see just how
easy it is to implement an effective copy protection scheme based on a CRYPTO-
BOX.

Comprehensive copy protection
Having familiarized yourself with the functioning of the CRYPTO-BOX, you are now
ready to implement a CRYPTO-BOX to your software. You can do this using the
demo key in the evaluation kit. Please read Chapter 9 for some tips you should
consider when you develop your individual protection scheme. When you place
your first order, you will obtain a unique, customer-specific code that we have allo-
cated to you. After replacing the demo code with your individual code, the pro-
gram will be ready to ship to your customers.

Programming a CRYPTO-BOX with specific codes
Every CRYPTO-BOX uses several ID codes, some of which are preset by MARX
(customer-specific) and some of which are programmable on-the-fly. You can use
either the AutoCrypt Wizard or CBEdit/CBProg to do this programming.

Never distribute a pro-
gram which is protected

with an Evaluation
CRYPTO-BOX, because
all demo keys are pro-

grammed the same
(see Appendix A "Codes

of a CRYPTO-BOX").

Note

You will receive from us
a printout of the ID

codes and passwords
for the CRYPTO-BOX we

have configured for
you. You will find the

access codes for our
CRYPTO-BOX evaluation

kit in the Appendix.

Note

For further information
on configuring the

CRYPTO-BOX, see
Section 5.4.1

"Configurable parame-
ters of a CRYPTO-BOX"
beginning on page 61.

Note

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 56

57Automatic vs. manual implementation Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

5.1.6 Comparison of automatic vs manual implementa-
tion

The CRYPTO-BOX provides two methods for protecting your software:
• The AUTO:CRYPT module (a component of the AutoCrypt Wizard) is used for

automatic protection of 32-bit Windows applications.
• A high level API (Application Programming Interface) allows you to manually

implement the protection system by means of easy-to-use function calls.

You can choose either single method, or combine the two, depending on your
requirements. Use the table below to determine which method will best meet your
needs.

The AutoCrypt Wizard
can program the ID
codes ID2 (for CBU),
ID4-8 (for CRYPTO-BOX
560/Net) or ID4 and 5
(CRYPTO-BOX Versa)
and also the memory
(size varies depending
on the type of
CRYPTO-BOX - see also
Section 5.4.3).

Automatic implementation Manual implementation
No source code needed Source code must be available
Quick and easy protection Maximum security and flexibility
Least effort required Customized applications
You define an expiration date and/or the The protection scheme is implem.
number of allowed program starts. by integrating function calls into the
The AUTO:CRYPT module of the Auto source code.
Crypt Wizard automatically injects license All functions are available through a
code into the unprotected program. high level API.

Automatic implementation Manual implementation
The program stops. You define how the protected

program reacts. You can stop the
program, switch to demo mode or
limit the program functionally.

Table 5.2
Requirements

Note

Table 5.3
If no CRYPTO-BOX is
attached

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 57

58 5. Fundamentals MARX data objects

Copyright © 2002, 2004 MARX® CryptoTech LP

5.2 Using MARX Data Objects

To protect your application against tampering or hacker attacks, MARX software
protection utilities (for example AUTO:CRYPT) provide various types of data objects
that are stored in the CRYPTO-BOX memory.

The values of these data objects are calculated and encrypted by means of special
algorithms.

Example values:

• an application file checksum that is calculated when the original application is
protected (to prevent file modifications)

• hash values calculated from the application's file name/path (to prevent rena-
ming or copying of the application file to another subdirectory)

• the size or last modified time of the application file (additional/optional to the
checksum check)

You can also store a number of application specific parameters in the memory of
the CRYPTO-BOX, for example various handles or passwords that are to be encryp-
ted or for which a hash value is to be calculated. To check these parameters, the
program should first encrypt them (e.g. using a hash function) then compare the
result with the values stored in the key's memory. Then, even if an unauthorized
person knows the memory contents, he will not be able to restore the original
parameters.

You can also store data objects such as Expiration date or Execution counter in
the CRYPTO-BOX memory. The first one is used to restrict the period in which the
program can be launched. The second one restricts the number of times the pro-
gram can be launched. Both solutions are very effective if you wish to restrict your
application licenses to a certain period of use or for demo versions.

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 58

59MPI Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

AUTO:CRYPT also allows you to set a password that the application will prompt
for every time it is launched. The password value (up to 12 bytes) is encrypted and
stored in the CRYPTO-BOX. This enables you to protect your applications against
unauthorized access. The "annoying" password prompt can also be used effecti-
vely in demo versions.

5.3 The MARX Programming Interface (MPI)

5.3.1 MPI - easy, secure and portable

The MPI (MARX Programming Interface) was developed to provide a flexible
means of integrating CRYPTO-BOX into your application. The MPI interface ena-
bles the development of easily portable software. All CRYPTO-BOX can be acces-
sed through identical function calls. This allows you to concentrate on the creative
aspects of your product development work rather than having to rewrite program
code every time you want to port the application to another platform or use a dif-
ferent CRYPTO-BOX model.

MPI provides the following basic functionality:

• Access control

• Authentication

• Event counting

• Encryption of data

The desired result can be achieved with just a few lines of code. You will be ama-
zed how easy it is to work with MPI.

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 59

60 5. Fundamentals MPI

Copyright © 2002, 2004 MARX® CryptoTech LP

5.3.2 MPI and the CRYPTO-BOX system

CRYPTO-BOX systems have been on the market since 1985. Back then, DOS was
the main target operating system for developers. These legacy APIs are still availa-
ble for the parallel CRYPTO-BOX. These interfaces are, however, too cumbersome
for today's 32-bit and 64-bit operating systems. To prevent you from working with
several different libraries and CRYPTO-BOX-specific APIs, MARX developed MPI -
an easily portable, cross-platform programming interface that can be used with all
CRYPTO-BOX.

The following operating systems are currently supported via MPI:

• Windows XP/2000/NT4/Me/9x
• MacOS including OS-X

The following operating systems are supported via the "TEOS"
CRYPTO-BOX API:

• Windows XP/2000/NT4/Me/9x
• Linux
• UNIX
• QNX
• Solaris

5.3.3 MPI in networks

MPI supports access to CRYPTO-BOX over a network. This is one of the main bene-
fits of MPI. The following protocols are supported for Win32 networks:
• TCP/IP
• NetBIOS
• IPX/SPX
• CITRIX and Windows Terminal Server

and TCP/IP, SPX/IPX for Novell NetWare Server and Win32 clients.

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 60

61Parameter CRYPTO-BOX Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

5.4 Configuring CRYPTO-BOX

5.4.1 Configurable parameters of a CRYPTO-BOX

Freely programmable ID codes
Every CRYPTO-BOX has several ID codes, some of which are fixed, customer-speci-
fic codes programmed by MARX. Another area of memory is programmable on-
the-fly. The number of ID codes depends on the CRYPTO-BOX model you are
using.

Network license counter
The CRYPTO-BOX USB Versa, XS and XL, and the 560/Net and Serial models also
feature a network license counter that can be used to limit the number of work-
stations in the network that can execute your program. The counter can be set to
0 (no network functionality) or 255 (unlimited network licenses) using the CBProg
utility (see section 5.4.4, "Configuring a CRYPTO-BOX using CBProg"). If you want
to limit the network licenses to a specific value, you can do so using LCS (License
Control System), an option available for the CRYPTO-BOX USB XS and XL,
CrypToken XS and XL, and the 560/Net models (see also Section 5.6.1 License
Control System).

5.4.2 AutoCrypt Wizard and CBProg

You can use either AutoCrypt Wizard or CBProg to configure the programmab-
le ID codes, memory and network licenses of a CRYPTO-BOX. The AutoCrypt
Wizard features a graphical user interface that enables you to configure your
CRYPTO-BOX with just a few mouse clicks. CBProg is a command line based pro-
gram that is ideally suited, for example, for automated programming of a large
number of CRYPTO-BOXes.

To configure your
CRYPTO-BOX using
AutoCrypt Wizard or
CBProg, you will need a
suitable hardware con-
figuration profile (.mrx
file) for your type of
CRYPTO-BOX. This file
contains the fixed pass-
words or ID codes
(encrypted) needed to
access your
CRYPTO-BOX. You will
receive it with your
customer-specific
CRYPTO-BOX, or you
can request it from us
without charge. For
further information on
hardware configuration
profiles, see page 44:
"Selecting the hardware
configuration profile".

Note

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 61

62 5. Fundamentals Configuring CRYPTO-BOX

Copyright © 2002, 2004 MARX® CryptoTech LP

5.4.3 Configuring a CRYPTO-BOX using the AutoCrypt
Wizard

For further information on CRYPTO-BOX ID codes, see Appendix A: Codes of a
CRYPTO-BOX. There you will find not only information on the passwords/ID codes
of the CBU in the Evaluation Kit, but also which ID codes are fixed and which are
programmable for a particular CRYPTO-BOX model. The AutoCrypt Wizard recog-
nizes automatically which parameters are configurable for a particular key type and
displays only those parameters.

Programming of the freely programmable ID codes (example for CRYPTO-BOX
USB):

For further information
on CRYPTO-BOX ID

codes, see Appendix A
"Codes of a CRYPTO-

BOX".

Note

For more information
about using the

AutoCrypt Wizard, see
pages 41-55 or refer to
the AutoCrypt Wizard

help.

Note

Figure 5.18
Programming the ID

codes

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 62

63Configuring CRYPTO-BOX Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

5.4.4 Configuring a CRYPTO-BOX using CBProg

CBProg is a command line based programming tool for the CRYPTO-BOX USB,
560/Net, Versa and Serial models. It is located in the \tools\cbprog folder of the
CRYPTO-BOX PPK.

Syntax for calling CBProg: CBPROG.EXE file1.mrx file2.ini [-q]
file1.mrx is the hardware profile for your particular type of CRYPTO-BOX (for furt-
her information, see Section 5.4.2 "AutoCrypt Wizard and CBProg").

file2.ini contains information about the values (ID codes, memory content, num-
ber of network licenses) to be programmed into your CRYPTO-BOX. You can edit
the file using any text editor, for example Windows Notepad.

In the folder \tools\cbprog you will find several sample .ini files for the various
CRYPTO-BOX models. You can modify the appropriate .ini file for your CRYPTO-
BOX model to suit your requirements.

-q (optional) activates "Quiet Mode" (no screen output)

Figure 5.19
Programming a memory
object

By default, the CBProg
program allows the net-
work license counter to
be set to 0 (no network
functionality) or 255
(unlimited network licen-
ses). If you want to limit
the network licenses to a
specific value, you need
to purchase the License
Control System (LCS)
first.

Note

Programming of the
CRYPTO-BOX memory
contents is supported
from CBProg version
1.0.1.1129 onwards.

Note

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 63

64 5. Fundamentals MarxProbe

Copyright © 2002, 2004 MARX® CryptoTech LP

5.5. MarxProbe - the test and diagnostic tool

MarxProbe is a powerful tool which greatly simplifies the troubleshooting of
CRYPTO-BOX. MarxProbe performs a number of different tasks: it performs exten-
sive diagnostics of your operating system, detects which MARX DLLs and device
drivers are installed and running, automatically downloads missing files from the
Internet and then installs them on the local computer.

Figure 5.20
MarxProbe

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 64

65MarxProbe Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

5.5.1 Functionality

• Analysis of installed MARX DLLs and device drivers. On Windows XP/2000/NT4
systems, if a device driver is installed but has not been run, the program
attempts to start it immediately without the need to reboot the computer.

• Detection of MARX hardware.

• Download (via the Internet) and installation of missing MARX components. On
Windows XP/2000/NT4 systems, you won't need to restart the computer after
the installation of device drivers!

• On Windows XP/2000/NT4 systems, an error message is displayed if the
user does not have administrator rights.

• Display of troubleshooting information. When a problem is detected, the pro-
gram suggests suitable measures for resolving it.

• Report generation. A report can be saved to a file or e-mailed directly from
within the program.

Supported operating systems
MarxProbe supports the Windows XP, Windows 2000/NT4, Windows Me/98 and
Windows 95 operating systems. Internet Explorer Version 4 or higher must be
installed on Windows NT4 and Windows 95 systems.

Documentation
The MarxProbe tool features context-sensitive online help that is accessible from
anywhere within the program.

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 65

66 5. Fundamentals MarxProbe

Copyright © 2002, 2004 MARX® CryptoTech LP

5.5.2 Using MarxProbe

MarxProbe works like a Wizard and guides you step-by-step through the troubles-
hooting process.

CRYPTO-BOX model
This screen is used to select the CRYPTO-BOX model you are using. If you are not
sure which CRYPTO-BOX model you have, refer to Chapter 3 "Main features of the
CRYPTO-BOX models", or click Help to access the online help. After selecting an
entry, click Next.

Detection of MARX Software
The MarxProbe Wizard helps you identify whether any components required for
interacting with the CRYPTO-BOX are missing. If any DLL or device driver is mis-
sing, an entry appears in the corresponding form field. Click Next to proceed to the
next screen.

Detection of CRYPTO-BOX models
At this point the program checks whether the selected CRYPTO-BOX model is con-
nected to the computer, and whether it is responding. A message is displayed indi-
cating whether or not the detection was successful.

This screen appears only if all required software components have been installed,
otherwise no hardware detection is necessary.

Troubleshooting
This screen will appear if one or more of the required MARX software components
are missing, not installed, not registered or not running properly (applies to
Windows XP/2000/NT4 device drivers). The program suggests possible measures to
resolve the problem and, after prompting for confirmation, automatically downlo-
ads and installs missing DLLs, device drivers etc..

You need to be connec-
ted to the Internet to

download files because
MarxProbe doesn't per-

form automatic dialup
(e.g. by a Modem).

Note

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 66

67MarxProbe Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

Report
MarxProbe generates a status report indicating whether your system is ready to
interact with the MARX hardware. If the problem was not able to be resolved, you
can send this report to MARX support.

Send via e-mail
Click the Send via e-mail button to launch the standard e-mail client. MarxProbe
attaches the report to the body of the e-mail and enters the MARX support e-mail
address in the To: field.

Save to file
Click the Save to file button to export the report to a text file. This file can be used
as an e-mail attachment.

On Windows Me/9x systems, don't forget to restart the computer after dri-
ver installation.

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 67

68 5. Fundamentals LCS

Copyright © 2002, 2004 MARX® CryptoTech LP

5.6 License Control System and Remote Field
Programming

5.6.1 License Control System (LCS)

The License Control System (LCS) lets you control the licensing of your applica-
tion in network environments by restricting the number of program instances that
can be running concurrently on the network.

The CRYPTO-BOX USB Versa, XS and XL, and 560/Net and Serial models feature a
hardware-based license counter. You can protect your applications by program-
ming this counter and connecting the CRYPTO-BOX to any computer in the net-
work - only the predefined number of programs will be able to be run concurrently
on the computers in the LAN.

The MARX Programming Interface (MPI) offers developers a convenient means
of managing licenses. Using MPI, you can search for a CRYPTO-BOX not only on
the local computer but also on the network from within your protected applica-
tion. To be able to do this, the CBNetServer (an integral component of the MARX
network solution) must be running on those LAN computers to which a CRYPTO-
BOX with a pre-programmed license counter has been connected. If the right hard-
ware key is found, the application (client) can attempt to open it with appropriate
MPI calls. The CBNetServer only allows the key to be opened if the number of cur-
rently connected clients does not exceed the number of licenses programmed into
the key.

Figure 5.21

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 68

69LCS Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

The CBNetServer provides a convenient means for network administrators to moni-
tor the LAN status, connected devices, connected clients etc. It supports the MARX
Administrative Interface (MAI) and the Administrative Console, a special
application for remote administration of the CBNetServer. Developers can use MAI
to implement custom solutions.

The CBNetServer also features an HTTP interface, thereby allowing it to be confi-
gured using over any standard Internet browser.

Initial programming and remote reprogramming of the license counter
The AutoCrypt Wizard or CBProg utilities can be used for initial programming of
the license counter (see Section 5.4.2 "AutoCrypt Wizard and CBProg"). You can
use the AutoCrypt Wizard to protect your applications and/or program CRYPTO-
BOX. License counter programming is only one of the many features this program
provides.

If you want to change (e.g. increase) the number of licenses directly at the custo-
mer site, it is best to use Remote Field Programming (RFP).

LCS (License Control System) for configuring user limits
The License Control System (LCS) is only supported by the CRYPTO-BOX USB XS
and XL, CrypToken XS and XL, and 560/Net and Serial models. This feature for
license management in a network allows you to limit the number of users that can
concurrently access an application that has been protected with a CRYPTO-BOX.

To use a CRYPTO-BOX in a network, you need to configure it with a valid user limit
between 0 and 254. The value 255 is reserved for unlimited use ("Floating
License"); it ensures that there is at least ONE CRYPTO-BOX present in the net-
work.

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 69

70 5. Fundamentals RFP

Copyright © 2002, 2004 MARX® CryptoTech LP

The network license counter can be configured using the AutoCrypt Wizard or
CBProg. If you have purchased LCS, you will receive from MARX a hardware pro-
file for your CRYPTO-BOX which will activate the feature allowing you to program
the network licenses of your CRYPTO-BOX.

If you do not have LCS, CBProg allows you to set the network license counter eit-
her to 0 (no network functionality) or 255 (unlimited network licenses). All other
values are ignored.

5.6.2 Remote Field Programming (RFP)

The abbreviation RFP stands for Remote Field Programming. This function
allows you to update the memory contents or the parameters of a CRYPTO-BOX
at the customer site without having to ship the CRYPTO-BOX back and forth. The

RFP standard solution consists of two components: a client and a server.

Your customers use the RFP client component, RUpdate (Remote Update Utility)
whereas you, the software manufacturer or vendor, use the RFP server compo-
nent, RFPDistr (Distributor Utility).

Using the RFP server component, you generate an encrypted, secure batch of com-
mands (the so-called activation key). The purpose of this key, which is processed
on the client side, is to reprogram the parameters, and update the memory con-
tents of the CRYPTO-BOX.

Figure 5.22
Remote Field
Programming

To configure the user
limit on Windows

Me/9x systems, you
need to install version

2.60 or higher of the
CRYPTO-BOX 560/Net

and Versa device driver.
LCS is not supported
under Windows 95.

Note

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 70

71RFP Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

The RFP standard solution saves an activation key to a file which you is sent after-
wards to the user via E-mail/Internet.

Benefits of RFP
The RFP utility allows you to access all CRYPTO-BOX functions even if you don't
have the key at hand. The RFP Distributor Utility can be used to program any
CRYPTO-BOX model, including the CRYPTO-BOX USB, CRYPTO-BOX Versa, CRYP-
TO-BOX 560/Net and CRYPTO-BOX Serial.

Further benefits:
• RFP can be custom configured for your hardware

• Saves time and money because hardware keys no longer need to be shipped
back and forth to be reprogrammed

• Fast remote provision of updates and upgrades to end-users

• Remote activation of software functions and remote access to your software

• Remote extension of usage and software leasing expiration dates

• Remote execution of maintenance work and remote exchange of data

• No license fees

• Can be used with all CRYPTO-BOX models

Updates of RFP are
available at
www.marx.com.

Note

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 71

72 5. Fundamentals RFP

Copyright © 2002, 2004 MARX® CryptoTech LP

How does Remote Field Programming work?
RFP enables you to update the content of your customer's CRYPTO-BOX by means
of a remote update. The advantage of this method is that there is no need to ship
the key back and forth to have it reprogrammed.

What is a transaction key?
When an end-user generates a request to change the memory contents of his
CRYPTO-BOX (by initiating a so-called transaction), an encrypted sequence is pro-
duced which is called a transaction key. This transaction key is sent to you (the ven-
dor). With the aid of this key, you then generate for the end-user an encrypted
sequence, the so-called activation code.

Figure 5.23
RFP schematic

When an end-user wants to request
an upgrade, he runs the Remote

Update Utility to generate a unique
transaction key which is sent to the

software vendor.

The vendor processes the transac-
tion key using the RFP Distributor
Utility which generates a unique,
customer-specific activation code
which he then sends to the end-

user.

After receiving the activation code,
the end-user processes it using the
Remote Update Utility which upda-

tes the content of the hardware
key.

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 72

73RFP Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

What is an activation code?
Having received a transaction key from an end-user, you then create an encrypted
sequence called an activation code. You need to send this activation code back to
the end-user. The end-user processes this activation code using the Remote Update
Utility, thereby updating the content of the CRYPTO-BOX.

Activation codes can be understood as encrypted commands that are sent to a
CRYPTO-BOX. These commands can only be executed ONCE and are only under-
stood by the CRYPTO-BOX that originally generated the unique transaction key.

RFP Components
The following directory tree shows a number of the RFP files:

The Distributor's Tool (RFPDist.exe) is your primary remote update tool. Your end-

users receive the file Rupdate.exe. See the online help for information on how to
create the files that need to be sent to end-users.

Make sure you read the
online help or the RFP
user manual to under-
stand how Remote Field
Programming works
and to ensure that you
don't inadvertently
send sensitive data to
your end-users.

Note

Figure 5.24
Directory-tree

Documentation

MARX hardware configuration profiles

Records of transactions

End-user’s remote update tool

Basic information about RFP

Online help files

Distributor’s tool

End-user’s tool

Online help files

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 73

74 5. Fundamentals MAAS

Copyright © 2002, 2004 MARX® CryptoTech LP

5.7 Multiple Application Authorization System (MAAS)

MAAS (Multiple Application Authorization System) is a tool which allows you
to protect several applications with just a single CRYPTO-BOX. It also enables to
you individually configure the protection options for each customer and applica-
tion.

All options are stored in the CRYPTO-BOX internal memory and can be called wit-
hin your application. The calls are integrated into your application's source code by
means of our MPI programming interface which supports a large number of deve-
lopment environments. The options specified within MAAS are passed to the
application and evaluated there.

Specify each protection option conveniently using MAAS! You can choose from
the following options - customizable for each application:
• Specify an expiration date after which the application can no longer be started
• Limit the number of program executions
• Limit the number of instances of an application that can be started in a net-

work
• Specify the workstation(s) on which the application is allowed to be installed
• Additional, custom settings (e.g. language)

The advantages of this method are obvious:
• You deliver the same software to all customers, which cuts costs and admini-

stration work
• It is still possible however to customize the software for each customer
• Absolute flexibility thanks to integration into your application's source code.

For example, you can decide during installation which applications are to be
installed and which aren't.

Updates of MAAS are
available at

www.marx.com.

Every one of your
customers receives the
same software (e.g. on
CD or via the Internet)

along with a customer-
specific programmed
CRYPTO-BOX. During
the software installa-

tion on the customer's
system the CRYPTO-

BOX "decides" which
applications are to be

installed and with
which options.

!

MAAS supports
Electronic Software
Distribution (ESD)!

!

Figure 5.25
MAAS

Note

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 74

75MAAS Fundamentals 5.

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 75

76 5. Fundamentals

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Ch5.qxp 3/11/2004 2:02 PM Page 76

77Custom-made solutions 6.

Copyright © 2002, 2004 MARX® CryptoTech LP

6.1 Distribution of protected applications

You have reached an important milestone. Your application is finished. The pro-
gram is working properly on your development system and you now want to bund-
le it and the CRYPTO-BOX Software Protection System into a package and ship it
to your customers. What components does the software package need to contain,
and what do you have to do to ensure that the CRYPTO-BOX runs on your custo-
mers different systems? The purpose of this chapter is to help you create reliable
distributions.

Besides your software and the CRYPTO-BOX, your distribution will need to contain
a number of additional components. The relevant components will be described in
the following sections. You can skip these sections if you are already familiar with
device drivers, DLLs and registry settings.

6.2 Device drivers

A device driver is a software component that enables a computer system and the
CRYPTO-BOX to communicate with one another. Peripheral devices won't work
correctly if the correct device drivers are missing in the system. To put it simply, a
device driver ensures that the operating system can "talk" to the hardware.

For a CRYPTO-BOX to work correctly, the proper device drivers need to be instal-
led on the system.

Linux and UNIX users
can skip this entire
chapter, because these
platforms do not
require either drivers
nor DLLs to be installed.

Note

It is not sufficient to
just copy device drivers
into their required
directories. The drivers
also need to be registe-
red in the system regi-
stry so that they can be
located by the opera-
ting system.

Note

6. Components for custom-made solutions

MARX provides a wide range of services for customers with special needs. We
are able to develop special types of the CRYPTO-BOX Serial for your preferred
platform. For example, our services could include solutions for SPARC worksta-
tions with inverted male/female connectors, or for implementations in the
QNX real-time operating system.

0-01MAR04_ks(PPK_MPI_Ch6.qxp 3/11/2004 2:02 PM Page 77

78 6. Custom-made solutions DLLs

Copyright © 2002, 2004 MARX® CryptoTech LP

In the following sections we will explain which device drivers are required for each
type of CRYPTO-BOX. Furthermore, you will find information about how to sim-
plify, for yourself and your end-users, the distribution of these files.

6.3 CRYPTO-BOX DLL and static libraries

A Dynamic Link Library or DLL ensures that executable code modules are loaded
as required and linked during run time. This allows library code fields to be auto-
matically updated (transparent to applications) and subsequently unloaded when
they are no longer needed. DLLs contain some functions that are available to other
applications also.

Communicating with device drivers is not always easy. This is where DLLs come into
play - they take care of this complex task for you. All you need to do is insert sim-
ple DLL calls in your applications. DLLs are used in Windows-based operating
systems. UNIX and OS/2 operate on a different principle. Alternatively, you can use
static libraries that you link directly into your program code. Static libraries for
Microsoft Visual C++ are available on request.

We will now explain which DLLs need to be shipped with the protected applica-
tion.

6.4 CRYPTO-BOX USB under Windows

Files and drivers for the CRYPTO-BOX USB (CBU)
The MARX Programming Interface (MPI) supports applications running on
Windows XP, 2000/NT4.0, Windows Me/98 and Windows 95 (please note that the
CBU does not support Windows 95).

Linux/UNIX support is also available. For more information, see Section 8.3.
"LINUX/UNIX /Solaris /QNX".

0-01MAR04_ks(PPK_MPI_Ch6.qxp 3/11/2004 2:02 PM Page 78

79Custom-made solutions 6.

Copyright © 2002, 2004 MARX® CryptoTech LP

To use the CRYPTO-BOX on a Windows platform, you will need the following files:

The following figure illustrates the tasks performed by each of the files in the distri-
bution:

Using CBSetup with the CRYPTO-BOX USB
The easiest way to install the device drivers and DLLs required for the CRYPTO-BOX
USB is to use MARX's Automatic Installer (CBSetup). The installer is a small self-
extracting program. It identifies the operating system, installs and registers the devi-
ce drives and copies the DLLs. You will find the installer under "Driver installation and
diagnostic tools" in the PPK Control Center. Simply execute the file cbsetup.exe in
that directory and then follow the instructions on the screen.

Operating system Windows XP/2000/NT4 Windows ME/98
Libraries mpiwin32.dll mpiwin32.dll
Device driver cbusb.sys cbusb.sys

32-bit
program

32-bit library automatically recognizes the Windows platform
32-bit library automatically recognizes the Windows platform

Windows XP, 2000/NT4, Me/98
Windows XP, 2000/NT4, Me/98

CBUSB.sys
CBUSB.sys

CRYPTO-BOX USB
CRYPTO-BOX USB

Figure 6.1
Task of the files in the
distribution

Table 6.1
Libraries and drivers for
CRYPTO-BOX USB

0-01MAR04_ks(PPK_MPI_Ch6.qxp 3/11/2004 2:02 PM Page 79

80 6. Custom-made solutions

Copyright © 2002, 2004 MARX® CryptoTech LP

You may also use the installer in your distribution. We have implemented a "silent"
installation mode that ensures trouble-free running of the installer from proprieta-
ry setup programs. An overview of the available command line switches is provi-
ded in the readme.txt file. For further help, run cbsetup.exe /h.

Driver installation on the end-user's system
• cbsetup.exe must be run on the PC (in administrator mode on Windows

XP/2000/NT4) before plugging the CRYPTO-BOX into the USB port

• Next plug the key into the USB port

• The Windows Hardware Assistant appears

• The customer must now click Next to start the automatic installation of the dri-
ver

• Windows locates the driver and installs it automatically

• On Windows XP/2000/NT4, it will not be necessary to restart the computer
after the installation.

In the Windows XP
Hardware Installation
Wizard, Microsoft has

added a new dialog box
that may be confusing.
Your customer can dis-

regard this message.
The CRYPTO-BOX

USB/CrypToken driver
has been tested and is

compatible with
Windows XP. Click

"Continue anyway" to
proceed with the driver

installation.

Note

0-01MAR04_ks(PPK_MPI_Ch6.qxp 3/11/2004 2:02 PM Page 80

81CRYPTO-BOX 560/Net and Versa Custom-made solutions 6.

Copyright © 2002, 2004 MARX® CryptoTech LP

6.5 CRYPTO-BOX 560/Net and Versa for the
parallel port

In the following sections we describe which software components you need to pro-
vide, along with the CRYPTO-BOX 560/Versa, to customers who are using
Windows.

Files and drivers for the CRYPTO-BOX 560/Net and Versa
The MARX Programming Interface (MPI) supports applications running on
Windows XP, 2000/NT, Windows Me/98 and Windows 95. To use the CRYPTO-
BOX, you will need the following files:

The following figure illustrates the tasks performed by each of the files in the distri-
bution:

MPI does not support
16-bit applications. An
older MARX library
does however offer
support for DOS and
Win3.x. Please contact
our Technical Support -
we are glad to send
you the required libra-
ries.

Note

Operating system Windows XP/2000/NT4 Windows Me/98
Libraries mpiwin32.dll mpiwin32.dll
Device driver cbn.sys cbn.vxd

Figure 6.2
File functions

Table 6.2
Libraries and drivers for
CRYPTO-BOX Parallel

32-bit
program

32-bit
program

32-bit library automatically recognize the Windows platform
32-bit library automatically recognize the Windows platform

CBN.sys
CBN.sys

Parallel port & CRYPTO-BOX
Parallel port & CRYPTO-BOX

Windows
9X/ Me

Windows
9X/ MeWindows

XP/ 2K/ NT

Windows
XP/ 2K/ NT

CBN.vxd
CBN.vxd

0-01MAR04_ks(PPK_MPI_Ch6.qxp 3/11/2004 2:02 PM Page 81

82 6. Custom-made solutions

Copyright © 2002, 2004 MARX® CryptoTech LP

MARX device drivers support SPP, ECP and EPP modes thereby ensuring error-free
communication via the printer interface.

Using CBSetup with the CRYPTO-BOX 560/Net and Versa
The easiest way to install the device drivers and DLLs required for the CRYPTO-BOX
560/Net and Versa models is to use MARX's Automatic Installer. The installer is
a small self-extracting program. It identifies the operating system, installs and regi-
sters the device drives and copies the DLLs. You will find the installer under "Driver
installation and diagnostic tools" in the PPK Control Center. Simply execute the file
cbsetup.exe in that directory and then follow the instructions on the screen.

You may also use the installer in your distribution. We have implemented a "silent"
installation mode that ensures trouble-free running of the installer from proprieta-
ry setup programs. An overview of the available command line switches is provi-
ded in the readme.txt file. For further help, run cbsetup.exe /h.

Driver installation on the end-user's system
• First run cbsetup.exe on the PC (in administrator mode on Windows

XP/2000/NT4)

• Next plug the CRYPTO-BOX 560/Net or Versa into the parallel port of the PC -
it will now be operational.

0-01MAR04_ks(PPK_MPI_Ch6.qxp 3/11/2004 2:02 PM Page 82

83CRYPTO-BOX Serial Custom-made solutions 6.

Copyright © 2002, 2004 MARX® CryptoTech LP

6.6 CRYPTO-BOX Serial

When accessing the CRYPTO-BOX Serial (CBS) using our library, this occurs direct-
ly via a serial interface of your computer. Developers who implement the CBS via
static libraries will not need to add anything to their distribution.

The CRYPTO-BOX Serial is a platform-independent model which can be used under
Windows, DOS, Linux and UNIX as well as many embedded systems. For more
information, see Section 8.3. "LINUX/UNIX /Solaris /QNX" of this user manual.

Windows DLL for CRYPTO-BOX Serial
No special device driver is required for the CRYPTO-BOX Serial. All you need to sup-
ply to your customers is the file mpiwin32.dll. You will find this file in the PPK
installation folder: mpi\library.

Using CBSetup with the CRYPTO-BOX Serial
The easiest way to install the MPI library required for the CRYPTO-BOX Serial is to
use MARX's Automatic Installer. The installer is a small self-extracting program.
It identifies the operating system and copies the DLL(s). You will find the installer
under the point "Driver installation and diagnostic tools" in the PPK Control
Center. Simply execute the file cbsetup.exe in that directory and then follow the
instructions on the screen.

You may also use the installer in your distribution. We have implemented a "silent"
installation mode that ensures trouble-free running of the installer from proprieta-
ry setup programs. An overview of the available command line switches is provi-
ded in the readme.txt file. For further help, run cbsetup.exe /h.

MPI does not support
16-bit applications.
Please contact us for
more information and
examples for DOS and
other 16-bit environ-
ments.

Note

Table 6.3
Libraries for
CRYPTO-BOX Serial

Operating system Windows XP/2000/NT4 Windows Me/98
Libraries mpiwin32.dll mpiwin32.dll
Device driver none none

0-01MAR04_ks(PPK_MPI_Ch6.qxp 3/11/2004 2:02 PM Page 83

84 6. Custom-made solutions CB-Card

Copyright © 2002, 2004 MARX® CryptoTech LP

Manual installation of the library required for CBS
You can also copy the MPI library file mpiwin32.dll by hand. The library does not
need to be registered and can be used immediately by applications. On Windows
95/98/Me, copy the file to the path x:\Windows\System. On Windows
XP/2000/NT4, copy the file to x:\WinNT\System32, where "x" is the letter of the
drive on which Windows has been installed.

The following table summarizes this information again:

6.7 CRYPTO-BOX Card

CRYPTO-BOX Card PCI
Instructions for installing the card and the associated device driver on Windows are
included with the CB-Card PCI you have received. You will also find them as a PDF
file (Acrobat Reader) in the X:\TOOLS\CBCARD directory on the PPK CD (X repre-
sents the drive letter of your CD-ROM drive).

CRYPTO-BOX Card ISA
Instructions for installing the card are included with the CB-Card you have recei-
ved. No driver installation is required; the card will be detected automatically by the
PC's BIOS.

Operating system Windows XP/2000/NT4 Windows Me/98
Libraries mpiwin32.dll mpiwin32.dll
Location x:\WinNT\System32 x:\Windows\System

Table 6.4
Location of the

CRYPTO-BOX
library files

Figure 6.3
CB-Card

0-01MAR04_ks(PPK_MPI_Ch6.qxp 3/11/2004 2:02 PM Page 84

For more information,
refer to the PPK Control
Center or visit
www.marx.com

Note

85Secure distribution of digital data 7.

Copyright © 2002, 2004 MARX® CryptoTech LP

7.1 Protection of Microsoft® Office documents

The CRYPTO-BOX can provide effective protection for all MS-Office documents
(Word, Excel, Access files). Implementation occurs by means of macros written in
the Visual Basic for Applications (VBA) programming language provided in MS-
Office. Protection functionality, such as encryption of an entire Word document or
sections thereof, or encryption of Excel tables or Access databases, can be realized
via the MARX Programming Interface (MPI). Examples are provided in the
Professional Protection Kit (PPK) MPI.

7.2 PDF Protection supports DRM (Digital Rights
Management)

MARX PDF Protection allows secure distribution of digital documents in PDF for-
mat. It provides information rights management (IRM) functionality as part of a
DRM strategy to protect and have control over digital information. Only the user
who has the appropriate CRYPTO-BOX can open, edit or print the PDF document.
Multiple authorization levels and implementation of an expiration date are availa-
ble. This provides real security compared to just a password based solution - a pass-
word can be known by many persons or may have been already compromised.
Documents are protected with 128 bit encryption; the encryption key is stored
safely inside the CRYPTO-BOX.

MARX PDF Protection is ideal for paid eBooks, Internet delivery, CDR distribution,
company internal documents, subscription services and regular updates.
It consists of two packages.

The Distributor's package includes a Virtual printer driver (PDF Converter), allo-
wing customers to convert documents to PDF format. Furthermore the MARX PDF
Protector - an interactive application to encrypt/protect PDF documents, program
the CRYPTO-BOX and process remote update requests.
The End-user's package includes the MARX PDF Viewer - to view the protected

7. Secure distribution of digital data

We offer comprehensive solutions for the distribution and protection
of digital data.

Tip

Encrypt sections of a
document, individual
table cells or records
using the hardware-
based AES/Rijndael
algorithm in the
CRYPTO-BOX USB! Or
store individual records
and important mathe-
matical formulas in the
CRYPTO-BOX's memory.
This makes it impossible
to circumvent the pro-
tection because the
CRYPTO-BOX needs
always to be present to
perform the decryption.

0-01MAR04_ks(PPK_MPI_Ch7.qxp 3/11/2004 2:03 PM Page 85

86 7. Secure distribution of digital data Adobe Acrobat

Copyright © 2002, 2004 MARX® CryptoTech LP

PDF files, a properly formatted CRYPTO-BOX and the Remote update
utility (optional).
Availability: March 18, 2004. Evaluation Kit upon request.

7.3 Security Extension for MacroMedia Director

MARX Security Extension (Scripting Xtra) provides an ideal solution for electro-
nic distribution of copy-protected films and presentations created using
MacroMedia Director 8.

7.4 HTML Security Extension

The purpose of the HTML protection solution is to encrypt/decrypt information of
any kind that has been stored in HTML format. You can use this solution to encrypt
HTML-based information and then supply these encrypted files to your end-users.

7.5 AudioVideo RTE™: Protection for video and audio
streams

AudioVideo RTE enables you to securely distribute video/audio files or streams.
Possible applications are Video-On-Demand or subscription services (Pay-TV via
PC), or as a reliable defense against industrial espionage in the case of video con-
ferencing and meetings.

Facts about AudioVideo RTE:
• Protection of video/audio files and video/audio streams (ASF-WMV, WMA for-

mats), support for other formats on request

• Supports Windows Media Services

• Uses AES/Rijndael for encryption and decryption (integrated into the CRYPTO-
BOX USB, the encryption key never leaves the hardware)

A demo version is available on the PPK CD.

0-01MAR04_ks(PPK_MPI_Ch7.qxp 3/11/2004 2:03 PM Page 86

87Overview Supported operating systems 8.

Copyright © 2002, 2004 MARX® CryptoTech LP

This chapter will help you:
• find the right MARX security device for your operating system,
• locate sample code for your programming environment.

For a quick overview we use the following numbers to represent a certain opera-
ting system in the overview table.

The following table gives an overview of operating systems supported by the
CRYPTO-BOX system.

Table 8.1
Operating system

Table 8.2
Overview
supported systems

1 DOS
2 Windows 3.1x
3 Windows 98/95
4 Windows NT 4.0
5 Windows XP/2000
6 Windows Me
7 Linux
8 Solaris
9 UNIX

11 SCO Unix
12 QNX
13 AIX
14 HP-UX
15 Novell
16 Citrix Metaframe /
Windows 2000/2003 Terminal Server
17 Apple MacOS 8/9/X
18 OS/2

10 Embedded systems with proprietary OS

CRYPTO-BOX system Port Operating Systems
CRYPTO-BOX USB CBU USB-Bus 3, 4, 5, 6, 7, 16, 17
CRYPTO-BOX 560/Net CBN LPT 1, 2, 3, 4, 5, 6, 15, 16, 18
CRYPTO-BOX Versa CBV LPT 1, 2, 3, 4, 5, 6, 18
CRYPTO-BOX Serial CBS RS232 1, 2, 3, 4, 5, 6, 7, 9

(8, 10, 11, 12, 13, 14 on
request)

8. Supported Operating Systems

The main focus of this manual is on 32-bit Windows operating systems like
Windows XP/2000/NT or Windows 9x. However, we also support many other
operating systems. As a matter of fact MARX provides hundreds of libraries
and provides solutions for the most exotic operating systems.

0-01MAR04_ks(PPK_MPI_Ch8.qxp 3/11/2004 2:03 PM Page 87

88 8. Supported operating systems Windows

Copyright © 2002, 2004 MARX® CryptoTech LP

8.1 Windows XP/2000 and Me/9x

All CRYPTO-BOX devices support the Windows operating system. You can choose
between CRYPTO-BOX for USB, parallel and serial ports.

The following Windows versions are supported:

• Windows XP/2000

• Windows NT4

• Windows Me/98/95

• Windows 3.1x

(USB without Windows 95 and 3.1x)

Programming Languages and Compilers for Windows
We are constantly developing sample source code that shows you how to integra-
te the CRYPTO-BOX using YOUR development environment. Source code examples
for Visual Basic, Visual C, Delphi and many other Windows programming environ-
ments are located in the following directory:

MPI\examples\YourCompiler
The Protection Kit readme file contains the latest documentation about the availa-
ble samples and where to find them. All major compilers are supported and upda-
ted, see APPENDIX D, page 181.

0-01MAR04_ks(PPK_MPI_Ch8.qxp 3/11/2004 2:03 PM Page 88

89Microsoft .Net Supported operating systems 8.

Copyright © 2002, 2004 MARX® CryptoTech LP

8.2 Support for Microsoft .NET environment

A new .NET Framework environment, intensively developed and promoted by
Microsoft, provides developers with extended flexibility and portability of their pro-
jects.

.NET Common Language Runtime (CLR) can handle partially or completely code of

.NET projects. Those code modules which are developed with a language compiler
that uses the CLR are called managed code or managed components. They bene-
fit from features such as cross-language integration, cross-language exception
handling, enhanced security, versioning and deployment support, a simplified
model for component interaction, and debugging and profiling services.

MARX released a special version of the MARX Programming Interface (MPI),
implemented as C++ Managed Extension. This .NET specific target includes meta-
data (storing MPI calls syntax and parameters) and it also allows developers to call
MPI from within different programming languages supporting .NET environment
(C++, C#, VB) without any extra function declarations, headers or include files.

Sample source code demonstrating MPI calls for all popular environments like C#,
C++ or VB, is now included in the MARX PPK.

8.3 LINUX/ UNIX/ Solaris/ QNX

CRYPTO-BOX Serial (CBS) is especially designed for cross-platform portability.
MARX provides a grown number of libraries for many systems running
LINUX/UNIX. At the moment Linux (Kernel 2.4 or higher) is supported by the
CRYPTO-BOX USB and CRYPTO-BOX Serial.

If you need support for other (UNIX-) systems (such as Solaris, QNX etc.), please
contact us. We most likely can port our code to your system. In the majority of
cases only a re-compilation of our library sources on the target platform is needed.
For customers that work with their own proprietary hardware and/or operating
system we make the sources available after signing a Non-Disclosure Agreement
(NDA).

0-01MAR04_ks(PPK_MPI_Ch8.qxp 3/11/2004 2:03 PM Page 89

90 8. Supported operating systems Macintosh

Copyright © 2002, 2004 MARX® CryptoTech LP

Programming Languages & Compilers for LINUX/ UNIX
Unix samples are compiled with the GNU compiler. They contain makefiles to build
the demo program. Source code examples are located on the PPK CD (see
"linux.txt" in the PPK CD root directory).

8.4 Macintosh / MacOS, OS/X Jaguar/Panther

All CRYPTO-BOX USB and CrypToken models support MacOS. More information
under "mac user.txt" in PPK CD main folder.

8.5 DOS

MARX develops software protection systems since 1983. Therefore, samples for
nearly all DOS legacy compilers are available. They can be found in a separate
directory on the PPK CD-ROM, or can be obtained upon request.

8.6 Embedded Systems

More information is available on request.

0-01MAR04_ks(PPK_MPI_Ch8.qxp 3/11/2004 2:03 PM Page 90

9.1 Important rules for professional software
protection

1. Never give a testing routine a self-describing name.
For example, if you use the function name CheckProtection in a DLL library, the
cracker will immediately know where in the code to focus his effort.

2. Avoid unnecessary error messages.
If the program gives an error message after a negative check routine, the cracker
can simply search the program code for the error message to track down the pro-
cedure that called it. When error messages are unavoidable, hide them as much as
possible, and create them (dynamically) in real time rather than use resources for
them. It's also a good idea to encrypt the data and the procedure that creates an
error message, which makes it much more difficult for the cracker to find in the
disassembled code.

3. Use the strong encryption algorithms of the CRYPTO-BOX for important
variables and licensing options.
The encryption engine is the most important part of the CRYPTO-BOX because it
makes the module indispensable and prevents emulation attacks.
The various CRYPTO-BOX hardware types currently support four encryption algo-
rithms. Symmetric: AES/Rijndael, IDEA, Blowfish (MARX algorithm) and asym-
metric: RSA. Random sequence generation and MD4/5 hash calculation are also
supported.
MARX Programming Interface (MPI) provides developers with universal support of
encryption algorithms, their portability and cross compatibility for all CRYPTO-BOX
types. It is possible to implement protection/authentication/e-commerce solutions
that benefit from the newest symmetric/asymmetric encryption techniques - on
local PCs or networks (Intranet/Internet).

91Secure Integration techniques 9.

Copyright © 2002, 2004 MARX® CryptoTech LP

9. Secure Integration techniques for CRYPTO-BOX modules

In this chapter we provide some suggestions and innovative ideas and techni-
ques for a secure integration of MARX hardware devices into your software.
You should consider these hints when you develop applications that access
CRYPTO-BOX modules using the MARX Programming Interface (MPI).

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 91

92 9. Secure Integration techniques Encryption algorithm

Copyright © 2002, 2004 MARX® CryptoTech LP

Example: you can generate RSA keys and use them for secure delivery of the
Rijndael session keys via the Internet to organize secure sessions. You can use hash
calculation and random sequence generation to verify passwords (without storing
real values) or to authenticate users.
It is possible to create/change encryption keys dynamically with the use of ran-
dom sequence generator. If the key is dependent on the date, the year, or the
length of the path of the working directory, it will lead to pseudo static encryption
keys. A cracker may bypass an encryption sequence but his result will be worthless
with changing running conditions. Use the checking responses to initiate the key
for the encryption algorithm.

4. Vary the CRYPTO-BOX function calls every time the software is run.
This protection strategy will create very strong security, especially if you use diffe-
rent queries and other function calls when the application is started next time (see
also point 7). Check different ID codes. Do function calls only once in a while,
maybe every other day or week. The main idea is: what's queried at one run does
not necessary allow conclusions on the results of the next run.

5. It is recommended to not show error messages immediately when the
CRYPTO-BOX is not found.
Wait a while before displaying an error message and put the error routine into
another part of the program. This makes it more difficult for the cracker to locate
the check routine.

6. Use checksums in your application.
If you test your EXE and DLL files, and even other files, for changes, crackers will
be unable to modify them with patches. However, they will still be able to modify
the code directly in memory, so it is a good idea to test for changes to the appli-
cation code in memory. You can improve protection by performing checksums for
smaller sections of your program. When you perform checksums on smaller sec-
tions of the program, you make it much more difficult for crackers.

7. Use more than one protection routine.
Any one protection routine should test only a part of the protection, and should
not contain all protection options. This prevents the cracker from understanding
the complete protection scheme when he discovers one routine.

The encryption engine
is the most powerful
part of the CRYPTO-
BOX devices. Use it
whenever you can.

Note

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 92

93Encryption algorithm Secure Integration techniques 9.

Copyright © 2002, 2004 MARX® CryptoTech LP

8. Change the applications behavior during runtime.
Make your protected application as dynamic as possible. Merge dummy queries
with real queries. You will discourage the cracker since he/she will never be com-
pletely sure if he is stepping into a trap. Insert dummy calls to the CRYPTO-BOX.
The dummy calls could initialize variables that are only partly needed in other pro-
gram parts.

9. Do NOT Make Simple Yes/No Decisions
When you send an access code to read an ID code, use complicated mathematical
expressions, which use floating-point operations instead of simple integer opera-
tions. This will lead to very complicated structures on a machine code level and
hackers will have more work deducing what is really happening.

Example:
You want an ID Code to equal 144 (you can program the ID Codes). Instead of
incorporating a statement like "if ID_Code=144 then", apply the following sta-
tement:

if(SQRT{IDCode}+8={IDCode+16}OVER 8)then ...

10. Store program parameters and variables in the CRYPTO-BOX
If you keep the registration information in the Windows registry, it can be disco-
vered. The CRYPTO-BOX contains memory that you can program on the fly. Use
this feature to store parameters that are essential for the program to run. This way
you can check the presence of a security device indirectly with a delayed reaction
and it will be very difficult for a hacker to understand.

Example:
"Calculating the surface of a circle"
Store the string "3.1415" in the CRYPTO-BOX memory before delivering your pro-
gram. At runtime read this string on the fly and transform it into a number that is
used to initialize a temporary variable, let's say "PiFromMARX". Then calculate:

Surface=PiFromMARX*Radius^2

11. Spread protection routines and separate Queries and Logical Divisions
It is a good idea to separate queries and logical decisions. Place the function calls
in different sections of your program. Furthermore, use the returned values to con-
trol the program flow. You may initialize program control parameters with ID

Note

Even a "high end" secu-
rity device is weakened
if you integrate only a
single YES/NO decision
into your program.

Spread protection routi-
nes, queries and pro-
gram parts in different
places: in the CRYPTO-
BOX and in a DLL. This
makes it very difficult
to remove the protec-
tion.

Tip

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 93

94 9. Secure Integration techniques

Copyright © 2002, 2004 MARX® CryptoTech LP

Codes or with values read from the memory of a CRYPTO-BOX. This way you cre-
ate checking procedures that are spread throughout the program. For a cracker
this means he must first study which parts belong together.

Example:
Store a returned ID Code in a global variable. Then check its value in a different
program module. Depending on the result, you set a new variable "NewVar". A
third subroutine tests "NewVar" and makes a decision to stop the program to
display an error message. The original returned ID Code is hidden well and the rela-
tion to this value is no longer obvious.

12. Use long registration information.
The longer the registration file or number, the longer it takes to understand it. If
the registration number is sufficiently long, it may contain essential information
that the program needs. If such a program is patched, it will not run correctly.

13. Test several current bits of data when using time-limit protection.
Check the time of files, system.dat and bootlog.txt. If the current date or time
is the same or smaller than when the program was run previously, it will be clear
that the time was adjusted. Also, you can save the date and time after each launch
of the program, and then test the current date and time during a new launch.

14. Use long testing routines
Routines that take only a few seconds when a program is running may take a lon-
ger time to run while disassembling or debugging. Especially when it is not obvious
if these routines are important for the protection or if it is just useless code.

15. If you distribute an application with certain features and functions
diasbled, you should not include the full features and functions in this
distribution.
Many developers make the mistake of including the code for a function that will
be executable only after registration (the ability to save files, for example). In that
cases, the cracker can modify the code so that the function will work.
A better approach is to include parts of the code (a sufficiently long bit) together
with the full version. With such a protection scheme, it's virtually impossible for the
cracker to remove the protection.
You can also encrypt the code for the limited function. When he buys the full ver-
sion the customer receives the CRYPTO-BOX which is used to decrypt the code for
the limited functionality.

Use MARX data objects
to realize counters and
other licensing options.

Tip

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 94

95Secure Integration techniques 9.

Copyright © 2002, 2004 MARX® CryptoTech LP

16. If your program has been cracked, release a new version.
Maybe the effort for implementing protection was not sufficient. Also pay atten-
tion to the Anti-Debugging and Anti-Disassembling tricks in chapter 9.2 and 9.3.
Frequent updates to your program makes an older, cracked version inattractive,
and the new version comes with an improved protection. The cracker needs to
start from the very beginning.

17. Use the best, current compression or encoding programs to encode
your software.
Keep your compression or encoding program up to date. A good compressor will
be difficult for a cracker to remove.

18. If your application uses a registration number, that number should
never be visible in memory.
This means that it should be impossible to find your program's registration num-
ber when the program is being debugged. When programming with a method
that checks to see whether the correct registration number was entered, do some-
thing other than just comparing two strings. The best way is to encode the enter-
ed registration number and the correct registration in the same way. In this way,
the two numbers can be compared without risk of the cracker discovering the
code. You can also use the CRYPTO-BOX memory to store the registration infor-
mation. You might also compare a checksum of the entered registration number
with the checksum of the correct registration number, though if you do so, you will
have to use more checking methods to really make sure that the correct registra-
tion number was entered, rather than modified in accordance with the checksum
that the cracker had seen in his debugger.

19. Use the Internet and require online registration.
When a program is registered online, its registration data is sent to a particular ser-
ver. In its most basic form, this server then sends back information to the program
telling it whether the registration was successful or not. However, the server can
also be used to send data that the program needs in order to launch the registe-
red application. This data may range from important parts of the code to a key
needed to decode parts of the program.

20. Do not forget to test your software's protection thoroughly.
Test your software's protection for all operating systems under which are suppor-
ted by your application. Often, protection that works with Windows 9x doesn't
work correctly with Windows XP, 2000, or NT.

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 95

96 9. Secure Integration techniques Protection against debugging

Copyright © 2002, 2004 MARX® CryptoTech LP

9.2 Tips for protection against debugging

Anti-debugging and anti-disassembling actions
Protecting your application against debugging and disassembling is very important.
Without any debugging protection it is much more easy for a cracker to under-
stand the protection mechanism you are using. Even simple anti-debugging tricks
can complicate debugging, and anti-disassembling tricks make it hard to under-
stand the debugged code. A good combination of both makes it much more dif-
ficult for a cracker to understand and remove even a simple protection.

Many tricks and examples for a good protection against debugging and disassem-
bling with SoftICE, IDA Pro, TRW2000 or Turbo Debugger (you can find a lot of
them in the Internet) are written in assembler. This allows to have small and effec-
tive routines. Many high-level programming languages allow you to insert assem-
bler code.

Pay attention: Many anti-debugging tricks which worked well under Windows 9X
will not work under Windows XP, 2000 or NT. Therefore it is very important to test
your software thoroughly under all environments you want to support. Anti-disas-
sembling tricks are mostly independent from the operating system, so you should
use them as much as possible.

At first your application should perform a simple test if a debugger is present in
memory at startup. Now you can stop your application and display a warning mes-
sage to remove the debugger. The cracker will probably find this simple test easily
and removes it. Therefore you should peform at least one more test at a later time
- but without displaying any warning or error messages. Instead let your program
"freeze" or do something unexpected (wrong calculations, just exit without any
error message) which makes it difficult to understand for the cracker.

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 96

97Protection against debugging Secure Integration techniques 9.

Copyright © 2002, 2004 MARX® CryptoTech LP

Find below an example how to detect SoftICE by calling INT 3. This is one of the
most well known anti-debugging tricks, and works in all versions of Windows.

INT 3h is called with the following registers: EAX=04h und EBP=4243484Bh
("BCHK" string). If SoftICE is active in memory , the EAX register will contain a
value other than 4.

mov ebp, 04243484Bh ; 'BCHK'
mov ax, 04h
int 3 ; Trap debugger.
cmp al,4
jnz SoftICE_Detected

SoftICE_detected:

The samples below is also used quite often. It checks via INT 41 if a debugger is
present. This interrupt is used by Windows debugging interface.

mov eax,0x4f ; AX = 004Fh
int 0x41 ; INT 41 CPU - MS Windows debugging kernel -

check for debugger installation
cmp ax,0xF386 ; AX = F386h if a debugger is present
jz SoftICE_detected
xor eax,eax

SoftICE_detected:

This is only a small choi-
ce of tricks. There are a
many more different
tricks and possibilities.
A good recommenda-
tion is to combine diffe-
rent anti-debugging
tricks for obfuscation:
redirect the cracker
down the wrong path
and do not warn him
that you are making
attempts to detect their
debugging tools. This
makes the crackers job
difficult and time con-
suming and many of
them will give up.

Tip

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 97

98 9. Secure Integration techniques Debugging and disassembling

Copyright © 2002, 2004 MARX® CryptoTech LP

This example checks via API-function "CreateFile" if the SoftICE VxD (driver) is
loaded. This example works under Windows 9X only.

{
HANDLE hFile;

; "\\.\SICE" without esc sequences
hFile = CreateFile("\\\\.\\SICE",

GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);

; If a valid handle is returned, SoftIce is loaded
if(hFile != INVALID_HANDLE_VALUE)
{

CloseHandle(hFile) ; closes the handle
return TRUE ; and returns TRUE

}
return FALSE ; SoftICE not detected

}

The same example, but for Windows XP/2000/NT:
{

HANDLE hFile;

; "\\.\NTICE" without esc sequences
hFile = CreateFile("\\\\.\\NTICE",

GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);

if(hFile != INVALID_HANDLE_VALUE)
{

CloseHandle(hFile);
return TRUE;

}

return FALSE;

}

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 98

99Debugging and disassembling Secure Integration techniques 9.

Copyright © 2002, 2004 MARX® CryptoTech LP

This example checks if a potential cracker has set breakpoints on key API func-
tions in a DLL (in this sample GetDlgItemTextA). Breakpoints on DLL functions of
the operating system are often used to understand what is done inside the appli-
cation:

LEA ESI, GetDlgItemTextA
CALL CheckForSoftICEBP
CMP EAX, "xxxx" <-- Substitute for your own identifier.
JE SoftICEBPIsSet <-- Send bad cracker to some really horrid rou-
tine.
CALL ESI

CheckForSoftICEBP:

PUSH ESI
PUSH DS
PUSH CS
POP DS
MOV ESI, [ESI+2] <-- Get dll function jmp address.
MOV ESI, [ESI] <-- Get dll function real address.
MOV EAX, ESI <-- Get first dword of dll function.
AND EAX, 0FFh <-- Use only first byte.
CMP AL, 0CCh <-- INT 3 ?.
MOV EAX, 'xxxx' <-- Your identifier.
JE BPXSet
XOR EAX, EAX <-- No BPX.

BPXSet:

POP DS
POP ESI
RET

Another possibility to detect debuggers is to set a timer which controls the excu-
tion time of a program routine. Because during analysis with a debugger the rou-
tine runs much slower.

Also a good trick is to send a command to the debugger which switches off bre-
akpoints and activates them again when the program is finished. But this requires
to switch into ring0 which is only possible under Windows 9X. A method to use
this trick under Windows XP/2000 or NT is to place the routine into a .sys driver
running in ring0.

Use the internal memo-
ry of the CRYPTO-BOX
to store essential parts
of your application! The
CRYPTO-BOX USB with
their large memory (4-
64KByte) is ideal for
that. You can even
write encrypted values
to the CRYPTO-BOX
memory to initialize
variables or constants
that are important for
the program. Create a
short program in your
programming language
to encrypt values and
use those values in your
program. A cracker may
disassemble your pro-
gram. But this will not
help him because only
the correct CRYPTO-BOX
will lead to the original
value using the decrypt
function.

Note

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 99

100 9. Secure Integration techniques Debugging and disassembling

Copyright © 2002, 2004 MARX® CryptoTech LP

9.3 Protection against Disassembling

Ways of making software analysis even more difficult.
In addition to anti-debug protection, professional countermeasures against disas-
semblers are a must to protect the program from hackers.

Examples of two different approaches.
The first approach to consider is "self modifying code". This technique, applied
correctly, does not represent any threat to the safety of the system, and can be suc-
cessfully called irrespective to the level of the user privileges.

A simple example of using the WriteProcessMemory function to create the self-
modifying code is given in the program listing below. It replaces the instruction of
the infinite loop JMP short $-2 with a conditional jump JZ $-2, which continues
normal execution of the program. This is a good way of complicating the analysis
of the program for the hacker, especially if the call of "WriteMe" is not located
in the vicinity of changeable code, but in a separate thread.
It is even better if the modified code looks natural and doesn't arouse any suspi-
cions. In such a case, the hacker may waste a lot of time wandering along the
branch of code that never gains control during program execution.

int WriteMe(void *addr, int wb)
{

H A N D L E
h=OpenProcess(PROCESS_VM_OPERATION|PROCESS_VM_WRITE,

true, GetCurrentProcessId());
return WriteProcessMemory(h, addr, &wb, 1, NULL);

}

int main(int argc, char* argv[])
{

_asm {
push 0x74 ; JMP --> > JZ
push offset Here
call WriteMe
add esp, 8

Here: JMP short here
}
printf("#JMP SHORT $-2 was changed to JZ $-2\n");
return 0;

}

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 100

101Protection against disassembling Secure Integration techniques 9.

Copyright © 2002, 2004 MARX® CryptoTech LP

There are limitations to consider with this approach. Using WriteProcessMemory is
only reasonable in compilers that compile into memory, or in unpackers of execu-
table files.

Another limitation of WriteProcessMemory is its inability to create new pages;
only the pages already existing are accessible to it. But what can be done, for
example, if another amount of memory must be allocated for the code dynamically
generated "on the fly"? Calling the heap control functions, such as malloc, will not
be helpful, since executing the code in the heap is not permitted.
But the possibility of executing code in the stack is helpful.

Executing code in the stack is permitted because many programs and the opera-
ting system need an executable stack to perform certain system functions. This
makes it easier for compilers and compiling interpreters to generate code.

Therefore, using the stack to execute self-modifying code is admissible and inde-
pendent of the system (i.e, it is universal). Besides, such a solution eliminates the
following drawbacks of the WriteProcessMemory function.

First, it is extremely difficult to reveal and trace the instructions that modify an
unknown memory location. The hacker will have to laboriously analyze the pro-
tection code without any hope of quick success (provided that the protective
mechanism is implemented without serious bugs that facilitate the hacker's task).
Several attackers will stop their efforts at this point.

Second, at any moment, the application may allocate as much memory for the
stack as it sees fit, and then, when it becomes unnecessary, free that space.
Fortunately, John von Neumann's principle is fair: Program code can be considered
data at one moment and executable code at another. This is just what is needed
for normal functioning of all unpackers and decryptors of executable code!

Third, repeated application of such technology in various (many) different program
parts, invoked later, at unpredictable time or situation, will exhaust hackers. A sup-
posed cracked program will fail to execute after some time - maybe after days and
weeks, and drive hackers crazy.

However, programming code that will be executed in the stack involves several

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 101

102 9. Secure Integration techniques Protection against disassembling

Copyright © 2002, 2004 MARX® CryptoTech LP

specific issues that sometimes are beyond the scope of this manual (for more
details please consider the excellent book "Hacker Disassembling Uncovered -
Powerful Techniques to Safeguard Your Programming, Kris Kaspersky,
2003", which can be ordered from MARX.

In many cases, such an approach requires knowledge of support for inline assem-
bler inserts by the compiler, which may be not very pleasant for application pro-
grammers uninterested in instructions and the structure of the microprocessor. To
solve this using a high-level language exclusively, the stack function must pass the
pointers (as arguments) to the functions called by it. This is a little inconvenient,
but a shorter way doesn't seem to exist.

A simple program that shows how functions are copied to and executed in the
stack is given in the listing found below.

void Demo(int (*_printf) (const char *,...))
{

_printf("Hello, World!\n");
return;

}

int main(int argc, char* argv])
{

char buff[1000];
int (*_printf) (const char *,...);
int (*_main) (int, char **);
void (*_Demo) (int (*) (const char *,...));
_printf=printf;

int func_len = (unsigned int) _main - (unsigned int) _Demo;
for (int a=0; a<func_len; a++)
buff[a]= ((char *) _Demo)[a];
_Demo = (void (*) (int (*) (const char *,...))) &buff[0];

_Demo(_printf);
return 0;

}

The question arises: What is the benefit of running a function in the stack? The
answer is: The most significant advantage of such a procedure is the ability to
change the code of a function running in the stack "on the fly"; for example, it
can be decrypted.
The encrypted code severly complicates disassembling and stengthens protection.

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 102

103Protection against disassembling Secure Integration techniques 9.

Copyright © 2002, 2004 MARX® CryptoTech LP

Certainly, encrypting just the code is not a serious obstacle for a skilled hacker
equipped with a debugger or an advanced disassembler like IDA Pro.

However, if used in combination with the encryption functions of the CRYPTO-BOX
(e.g. using AES/Rijndael unbreakable algorithm implemented in hardware) an
"external crypto coprocessor" is added to the protected application - and this part
is not accessible to even the most advanced debugger or disassembler!

Without that essential program part, the application will not run.

By doing it this way, maximum security is achieved. Certified AES/Rijndael-
Algorithm runs on external CRYPTO-BOX hardware platform - and only results of
encryption/decryption tasks are exchanged with the application, and never the
keys.

There are endless possibilities to take advantage of the various encryption- and
memory options of the different CRYPTO-BOX models. Hint: Model "XL" is addi-
tionally equipped with a true hardware implementation of a "White Noise
Generator". Best suited for random key generation, or just to "create noise" on
data lines ...

Debugging, disassembling, tracing: The CRYPTO-BOX in combination with sophi-
sticated programming techniques provides the answer against hackers and their
tools.

Figure 9.1
Even this hardware
attack was not success-
ful. The inner compo-
nents of the CBU are
inaccessible.
And water/dust
resistant, too.

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 103

104 9. Secure Integration techniques

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Ch9.qxp 3/11/2004 2:04 PM Page 104

105MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

All CRYPTO-BOXes can be accessed through one common 32-bit interface, the
MARX Programming Interface (MPI). Therefore you can access any CRYPTO-BOX
type using the same source code.

The MARX Programming Interface (MPI) has important advantages:
• Easy-to-use function calls.

• Local access through USB, LPT and RS232 serial ports.

• Remote access via TCP/IP, IPX/SPX and NetBIOS.

• MARX Data Objects greatly simplify most typical protection solutions.

• Support of all CRYPTO-BOX models.

• Hardware access via device drivers for Windows XP/2000/Me/NT4/9x, MacOS
starting from 8.6

10. The MPI- (API-) Reference

In this chapter we describe the MARX Programming Interface, which will be
referred to as MPI.

Even though this
manual focuses on the
Windows 32-bit opera-
ting system, libraries
for MacOS, Linux/UNIX
and Solaris are availa-
ble.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 105

106 10. MPI Reference

Copyright © 2002, 2004 MARX® CryptoTech LP

10.1 MPI – Makes Network Access a Snap

Figure 10.1
MPI Function calls

Tipp

On this page you will
find an overview about
all MPI functions. They
are displayed in order

of their application.
Page links for every

function are in chapter
10.5 at page 111

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 106

107MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

The purpose of the MPI is to provide an easy-to-use way to integrate the CRYPTO-
BOX into your application. So far, we only talked about local access to CRYPTO-
BOX modules.

To access a CRYPTO-BOX in a network there is really not that much to change in
your code. For the MPI network access just means another channel that you sub-
mit through the MPI_SetChannel function. You have full control over the search
order, e.g. the order of network protocols that are used to find a CRYPTO-BOX
Server (CBNetServer) in the network.

Additional parameters can be submitted via the MPI_SetNetworkParameter
function. If no Network Parameters are set MPI, will try to find the CBNet Server
automatically using default values.

Where to start with network access
Only one function call decides whether or not a CRYPTO-BOX can be accessed over
the network. MPI_SetChannel does the whole job. All other function calls can be
used the same way as they are used for local access.

In addition to the functions that are already available for the local interface, the
MPI provides functions to find out how many clients are accessing the CBNet
Server at a certain time.

10.2 Using MARX Data Objects

MARX Data Objects supported by the MPI greatly simplify typical protection sce-
narious, like protecting programs with expiration date, number of executions
(usage counter), etc.

MPI environment currently supports the following "ready to use" predefined types
of Data Objects:
• expiration date;
• number of days allowed;
• time allowed;
• usage counter.

The CRYPTO-BOX USB,
CRYPTO-BOX Serial and
CRYPTO-BOX 560/Net
can be accessed over
network. With the
License Control System
LCS (available as an
option) you can define
the number of users
accessing the CRYPTO-
BOX via network.

Note

Please refer to the sam-
ple programs in the
\mpi\examples directo-
ry, which contains sour-
ce code that demonstra-
tes network access for
Visual C, Visual Basic,
Delphi and many more
Windows programming
environments.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 107

108 10. MPI Reference

Copyright © 2002, 2004 MARX® CryptoTech LP

Such objects can be placed in device memory, initialized, checked, verified, etc.
Besides predefined type User Defined object (or memory object) is also supported,
allowing to store structured secure data in the CRYPTO-BOX memory.

Where to start with Data Objects
Only one function call (MPI_ProcessDataObject) provides you with universal inter-
face to MARX Data Objects - allows to create (SET), read (GET) Data Objects and
perform other operations depending on object type.

10.3 Where to start using the API

Only a few function calls are necessary to do a very basic check of the CRYPTO-
BOX presence and verify whether it is a device that is issued for your company.

Please refer to the sample programs in the \mpi\examples directory, which contains
source code for Visual C, Visual Basic, Delphi and many more Windows program-
ming environments.

Initializing Channels with SetChannel
Before accessing CRYPTO-BOX devices the channel needs to be selected. The
expression "channel" refers to a certain hardware type that is accessed through a
particular local or network port. This allows you to deal with the CRYPTO-BOX type
that you chose for your security needs.

Submitting Access Codes with SetPassword
CRYPTO-BOX devices are protected by access codes. MARX assigns these codes.
They are unique for every company we ship to. Most of the MPI functions work
only if the correct access codes are submitted.

Both local and remote
channels can be set to

access CRYPTO-BOX
devices over local ports
or networks. Once you
have set the channels

there is no difference in
accessing the CRYPTO-

BOX locally or over net-
works. All other func-

tion calls stay the same.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 108

109MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Identifying a CRYPTO-BOX with SearchFirst
In most cases you will deal with one CRYPTO-BOX device and define it through the
channel you choose. However, other developers might use a CRYPTO-BOX, too.
Maybe even on the same channel (=same hardware type, same local/remote port).
That's why MPI provides a function called MPI_SearchFirst(). The only purpose is
finding exactly YOUR hardware. This function returns a MARX hardware identifier
so that you can reference to that particular CRYPTO-BOX directly without ever
scanning the whole system again.

Managing Resources using Open and Close
CRYPTO-BOX hardware devices, connected to a USB, parallel or serial are acquired
(=Open) and released (=Close). Every Open function requires a Close. The same
applies for access to devices that are available over a network.
Typically there is one Open call in the beginning of a program and a Close call at
the end. MARX pass-through devices, such as the CRYPTO-BOX 560/Net or Versa
parallel, transparent on the hardware level. These devices are usually still available
for other peripheral devices and even for simultaneous access by other applica-
tions.

MPI_Open () accesses the CRYPTO-BOX if the submitted hardware identifier is
valid.

MPI_Close () releases resources and destroys passwords.

Doing a Simple Check using SearchFirst
Yes, you are right. SearchFirst was already explained earlier. We just wanted to
point out that a successfully executed MPI_SearchFirst function call is already a sim-
ple check of the CRYPTO-BOX. Only with a valid access code (submitted by
MPI_SetPassword) SearchFirst returns a hardware identifier.

The shortest MPI program consists of three functions for local access and 4 func-
tion calls for remote access:

1. MPI_SetNetworkParameter() (for remote access only)
2. MPI_SetChannel()
3. MPI_SubmitPassword()
4. MPI_SearchFirst()

Since mpiwin32.dll
Version 3.0.2.1009 it is
possible to speed up
significantly the MPI
search & open sequen-
ce. If you want to open
the first CRYPTO-BOX of
predefined type with
specified ScodeID1 pass-
word it is not needed
to call
MPI_SearchFirst/Next
iteration any more.
Simply use handle (0)
for MPI_Open and
MPI_Close in this case.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 109

110 10. MPI Reference MPI Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

10.4 Where to find the functions of the MPI
All functions of the MPI reside in libraries that can be integrated into an applica-
tion. The libraries support all current CRYPTO-BOXes.

The standard library file for combined local and remote access under Windows
9x/Me/NT/2000 is the MPIwin32.dll. If you need local access only you can use the
MPIloc32.dll which does not include network functions. The MPInet32.dll is for
network access only.

10.5 Available Function Calls
The following tables list the function calls that are available in the MPI. All func-
tion calls start with the MPI_ prefix which stands for MARX Programming
Interface.

Table 10.1
Functions that manage

CRYPTO-BOX access
Passwords

Table 10.2
Functions to set up a

communication channel

Function Description Page
ErasePassword Remove password from password pool 132
SubmitPasswordEx/

Submit password to password pool 167/165
SubmitPassword
Access codes are submitted to a password pool for future access. Typical func-
tions that require passwords are ReadMem, WriteMem, ReadID.

Function Description Page
SetApplication Sets the application identifier

N/V
(not yet implemented)

SetChannel Sets the local/remote port
157

and hardware type
SetNetworkParameter Sets network specific parameters 160
A communication channel is the combination of local/remote port type and the
CRYPTO-BOX model type.

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 110

111MPI Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Function Description Page
Close Closes a MARX hardware resource 117
Open Opens a MARX hardware resource 147
SearchFirst Looks for the first CRYPTO-BOX

153
with specific access password

SearchNext Looks for the next CRYPTO-BOX
155

with specific access password
WhatIsAvailable Looks for any available CRYPTO-BOX

169

CRYPTO-BOX USB
select CBU as hardware type and AUTO or USB (local access) or AUTONET
(remote access) as port.
CRYPTO-BOX 560/Net (local access)
select CBN as hardware type and AUTO or LPT (local access) or AUTONET (remo-
te access) as port.
CRYPTO-BOX Versa
select CBV as hardware type and AUTO or LPT as (local) port.
CRYPTO-BOX Serial
select CBS as hardware type and AUTO or COM as (local) port.

Table 3
Functions to establish a
communication channel

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 111

112 10. MPI Reference MPI Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Table 10.4
Functions to query a
CRYPTO-BOX device

Function Description Page
EraseEncryptionKey Remove a key from keys pool 130
SubmitEncryptionKey Submit an encryption key to keys pool 162
DecryptEx/Decrypt Decrypts data 118/122
EncryptEx/Encrypt Encrypts data 124/128
GenerateKeyPairRSA Generates unique pair of RSA keys

134
(private and public)

GetBoxType Get the box type 137
GetBoxInfo Get box model and memory size
GetDeveloperId Get the unique developer ID 136
GetDrvVersion Get version of driver 138
GetFirmVersion Get version of firmware N/V
GetHash Calculates hash value for submitted

140
source buffer

GetLastError Get error code and message of the
142

latest function call
GetLibVersion Get version of MPI library N/V
GetSerialNr Get the box specific serial number 146
ReadID Read the ID code of a CRYPTO-BOX 150
ReadMem Reads data from CRYPTO-BOX memory 151
WriteMem Writes data to CRYPTO-BOX memory 171
ProcessDataObject MARX Data Objects support 148
GetRandomSequence Obtains generated random sequence 145

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 112

113MPI Return codes MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

10.6 Return Codes of CRYPTO-BOX devices

All functions of the MPI return 0 (zero) in case of success. Values other than zero
are indicating an error.

The following table gives a description of the available error codes. Error codes are
sometimes referred to as return codes of a function. This is sometimes confusing,
because functions that pass parameters “by reference” return values too.
Therefore we prefer to call the return code of a function itself an error code.

In the sample programs we usually pre-define error codes in header files or pro-
gram modules that can be used to deal with error codes.

Error Codes Description
0000 (dez) 0000 (hex) Function call was successful
4097 (dez) 1001 (hex) The function is not implemented or not

supported for this type of token hardware
4098 (dez) 1002 (hex) Operating system is unknown or

not supported
4099 (dez) 1003 (hex) Incorrect library version
4100 (dez) 1004 (hex) Device driver is missing
4101 (dez) 1005 (hex) Wrong device driver version
4102 (dez) 1006 (hex) Library file is missing
4112 (dez) 1010 (hex) The selected system port failed
4113 (dez) 1011 (hex) No CRYPTO-BOX attached
4114 (dez) 1012 (hex) No CRYPTO-BOX of the selected Typ

attached
4115 (dez) 1013 (hex) CRYPTO-BOX failed (internal errror)
4116 (dez) 1014 (hex) CRYPTO-BOX-time out
4117 (dez) 1015 (hex) Wrong firmware version
4118 (dez) 1016 (hex) CRYPTO-BOX is busy
4119 (dez) 1017 (hex) Destination buffer size is not enough

(encryption/decryption)
4129 (dez) 1021 (hex) Invalid or missing parameter
4130 (dez) 1022 (hex) Invalid or missing password
4131 (dez) 1023 (hex) Invalid or missing authentication
4145 (dez) 1031 (hex) Remote access via IPX/SPX failed

Table 10.5
MPI error codes

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 113

114 10. MPI Reference Return codes

Copyright © 2002, 2004 MARX® CryptoTech LP

Error coed Description
4146 (dez) 1032 (hex) Remote access via NetBIOS failed
4147 (dez) 1033 (hex) Remote access via TCP/IP failed
4132 (dez) 1024 (hex) Not logged into server correctly
4133 (dez) 1025 (hex) Too many users connected
4134 (dez) 1026 (hex) Server internal table is full
4135 (dez) 1027 (hex) Password must be submitted before
4136 (dez) 1028 (hex) Unvalid request from client
4149 (dez) 1035 (hex) Connection to server failed
4150 (dez) 1036 (hex) Client is already connected
4151 (dez) 1037 (hex) Client is already disconnected
4152 (dez) 1038 (hex) Remote server not found
4153 (dez) 1039 (hex) No compatible transport layer found
4160 (dez) 1040 (hex) System out of memory
4161 (dez) 1041 (hex) Network communication time out
4167 (dez) 1047 (hex) Invalid response from server received
4162 (dez) 1042 (hex) License counter is damaged
4163 (dez) 1043 (hex) Out of range CRYPTO-BOX memory access
4164 (dez) 1044 (hex) License counter read error: unable to read ID1
4165 (dez) 1045 (hex) License counter read error: unable to read RAM
4166 (dez) 1046 (hex) License counter read error: unable to decrypt
4176 (dez) 1050 (hex) Encryption key must be submitted before
4177 (dez) 1051 (hex) RSA key structure is unvalid
4178 (dez) 1052 (hex) The submitted destination buffer is too short
4353 (dez) 1101 (hex) Data Object not found
4355 (dez) 1103 (hex) End of usage counter
4356 (dez) 1104 (hex) Date was modified (PC BIOS date modification

was detected)
4357 (dez) 1105 (hex) Date expired
6553 (dez) 1999 (hex) Unlimited users quantity license
8192 (dez) 2000 (hex) Close handle low-level error
8193 (dez) 2001 (hex) Get handle low-level error
8194 (dez) 2002 (hex) IOCTL low-level error
8195 (dez) 2003 (hex) Driver exception
8196 (dez) 2004 (hex) Driver System error

Table 10.6
MPI error codes
(Continuation)

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 114

115Access codes MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

10.7 Access Codes of a CRYPTO-BOX® Evaluation Kit

The CRYPTO-BOX USB (CBU) and CRYPTO-BOX Serial (CBS) devices are MPI ena-
bled and therefore accessible through the MARX Programming Interface.
The passwords for accessing the CRYPTO-BOX included in the Evaluation kit, are
shown in Appendix A, page 173.

The access passwords for your customer specific CRYPTO-BOX are displayed at the
production sheet is enclosed to CRYPTO-BOX delivery.

10.8 Type Declarations of MPI

The MARX interface can be ported to various platforms and therefore variable
types are used that are system independent.

Variablentyp Beschreibung
WORD 16 bit unsigned number
DWORD 32 bit unsigned number
CHAR 8 bit character
STRING char
STRING10 10 character string
STRING80 80 character string
LPVOID pointer to void

Table 10.8
MPI variable types
Overview

Variables can be passed
“by value” or “by refe-
rence”. In "C" this is
indicated by a * after
the variable type.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 115

116 10. MPI Reference API Reference

Copyright © 2002, 2004 MARX® CryptoTech LP

10.9 The MARX API Reference

How to read the MARX API Reference
On the following pages you will find a detailed description of all available MPI
functions. Every function call is described on a single page. Here is a separate func-
tion description:

The function name is always on the top left side of the description. The supported
CRYPTO-BOX device is listed on the right side of the function name bar.

This is followed by an Argument List which lists all arguments that are passed
during a function call, the type of the variables used and whether they are passed
by value or by reference.

The Usage section explains briefly what the function is good for.

This is followed by an Argument Description. This section describes detail about
the arguments (parameters) passed to the API. Many times parameter ranges are
listed here, too.

The next section shows the Results of a function call. Every argument that is chan-
ged by the function is listed here. Arguments that are modified by the MPI are
always passed by reference with one exception: the return code of the function
itself.

In the Example section, one or more examples are written in pseudo-code to
explain how an MPI function is typically called.

MPI_SampleFunction Supported CRYPTO-BOX type

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 116

117Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

MPI function calls

Usage:
To close a communication channel previously opened via MPI_Open. This function
frees up all resources allocated via MPI_Open when a communication channel was
established, and deletes all submitted access codes from memory.

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
Identifier is a valid MARX hardware identifier obtained from MPI_SearchFirst or
MPI_SearchNext functions and used by MPI_Open to establish a communication
channel.

Example:
…
{ Submit correct access codes via MPI_SubmitPassword; then
search for security devices via MPI_SearchFirst which returns an
Identifier for a communication channel to be opened }

MPI_Open (Identifier)
…
…
{ Free up resources allocated for the active channel during the
session and delete all access codes from the memory }

MPI_Close (Identifier)

MPI_Close CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
DWORD Value Identifier

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 117

118 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
The string of bytes in SourceBuffer is passed to the API and then decrypted eit-
her by MARX hardware or within the MPI library depending on the selected algo-
rithm, the encryption key type and the CRYPTO-BOX type. The algorithm depends
on the encryption key value (submitted by the MPI_SubmitEncryptionKey()
function or hardcoded in the CRYPTO-BOX hardware) and/or system parameters
that are configured by MARX. Make sure to use identical encryption key values for
encryption and decryption.

Two parameters describing resulting (destination) buffer will take care of the facts
that RSA is a block oriented algorithm. It's impossible to encrypt, say, 117 bytes
string to the same size buffer. If you use a 64 bytes RSA key, the result will have
length divisible by a 64. If 256 bytes key is used then the result's size should be
divisible by 256.

If DestinationBuffer is NULL or LenOfDestBuffer is NULL, it means that
SourceBuffer should be used to store decrypted data.

LenOfDestBuffer parameter should be passed "by reference" not "by value". If
its value is not enough to keep decrypted data, the function will return
Return_Code = 0x1052 and this parameter will contain corrected value (number
of bytes required to store decrypted data.

MPI_DecryptEx CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING* Reference AlgorithmType
STRING* Reference EncryptionKeyType
DWORD Value LenOfSourceBuffer
LPVOID Reference SourceBuffer
DWORD* Reference pLenOfDestBuffer
LPVOID Reference DestinationBuffer

MARX enryption algo-
rithms are hardware

specific. Be careful
when you switch from
one type of hardware

to another, because
encryption algorithm

incompatibility may be
encountered.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 118

119Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Argument Description:
AlgorithmType defines the algorithm used to decrypt the SourceBuffer. The fol-
lowing algorithm types are available (supported by the MPI):

IDEA_ALGORITHM IDEA™ algorithm
MARX_ALGORITHM MARX proprietary algorithm
RIJNDAEL_ALGORITHM Rijndael algorithm
RSA_ALGORITHM RSA algorithm

EncryptionKeyType defines the type of the encryption key used to decrypt the
SourceBuffer. The following key types are available:

For the IDEA_ALGORITHM:
IDEA_KEY
IDEA_EXTERN_KEY

For the MARX_ALGORITHM:
MARX_KEY
MARX_EXTERN_KEY

If being called with "extern" key, it means that software emulated version of the
algorithm should be used even if active MPI device (currently opened) supports
hardware implementation of the required algorithm.

For the RIJNDAEL_ALGORITHM:
RIJNDAEL_FIXED_KEY
RIJNDAEL_PRIVATE_KEY
RIJNDAEL_SESSION_KEY
RIJNDAEL_EXTERN_KEY

First three names assume hardware implemented Rijndael + corresponding key slot
usage: fixed/private/session (CBU box should be open). The last one can be used
for any type of CRYPTO-BOX device, it assumes that an encryption key should be
submitted to the MPI prior to encryption/decryption call.

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 119

120 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

For the RSA_ALGORITHM:
RSA_FIXED_PRIVATE_KEY
RSA_FIXED_PUBLIC_KEY
RSA_CBU_PRIVATE_KEY
RSA_CBU_PUBLIC_KEY
RSA_EXTERN_PRIVATE_KEY
RSA_EXTERN_PUBLIC_KEY

First four key names assume hardware implemented RSA. For RSA_FIXED fixed key
will be used, for RSA_CBU a proper key should be stored somewhere in the CBU
box memory (RAM1) before encryption. The key offset and length should be told
to the MPI prior to encryption/decryption call.

The RSA_EXTERN keys assume software emulated RSA algorithm, it can be used
for any MPI box, the corresponding RSA key should be submitted to the MPI prior
to encryption/decryption call.

DestinationBuffer must contain LenOfDestBuffer bytes (the same for
SourceBuffer and LenOfSourceBuffer) so that the code works correctly.

If DestinationBuffer is NULL, it means that SourceBuffer should be used to store
decrypted data.

Selected AlgorithmType and EncryptionKeyType must be the same as for the
encryption to receive correctly decrypted data.

Results:
The Return_code is zero for successful operation. If Return_code = 0x1052, it
means that DestinationBuffer size is not enough. In this case LenOfDestBuffer
contains required size. For a Return_code other than zero or 0x1052, please refer
to the section "10.6 Return Codes of CRYPTO-BOX devices" on page 113.

In case of success (Return_code = 0), the DestinationBuffer contains
LenOfDestBuffer bytes that have been decrypted using AlgorithmType and
EncryptionKeyType.

The CRYPTO-BOX USB
devices and the

CRYPTO-BOX Serial own
a hardware implemen-
ted AES/Rijndael algo-
rithm and support RSA

(except CBU Versa).
RSA keys will be stored
inside the CRYPTO-BOX

hardware, encryption
and decryption is pro-

cessed in the CBU devi-
ce driver. IDEA and

MARX (Blowfish) algo-
rithms are software

implemented (inside
MPI library).

The CRYPTO-BOX types
560/Net and Versa

parallel are supporting
AES/Rijndael and RSA

via software implemen-
tation, IDEA and MARX

algorithms are imple-
mented in hardware.

Note

All CRYPTO-BOX USB
devices for one custo-

mer are compatible
during encryption and

decryption with
RIJNDAEL_PRIVATE_KEY

or RSA algorithm
(except CBU Versa) as

long as the encryption
keys were not repro-

grammed with CBProg.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 120

121Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Example:

{ DecryptionBuffer should hold a string encrypted with the same
seed }

AlgorithmType = "IDEA_ALGORITHM"
KeyType = "IDEA_EXTERN_KEY"
SecretSeed = hex 11117777
SubmitEncryptionKey(KeyType,length of(SecretSeed),
pointer to (SecretSeed), NULL)
NumberOfBytes = length of (DecryptionBuffer)

DecryptEx (AlgorithmType, KeyType, NumberOfBytes,
DecryptionBuffer, NULL, NULL)

{ The same buffer was used as a source and a target of decryp-
tion }

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 121

122 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
Obsolete function, use MPI_DecryptEx instead.
The string in DecryptionBuffer is passed to the API and then decrypted either by
the CRYPTO-BOX or within the MPI library depending on the selected algorithm
and the CRYPTO-BOX type. The algorithm depends on the SecretSeed and/or
system parameters that are configured by MARX. Make sure to use identical seeds
for encryption and decryption.

Argument Description:
AlgorithmType defines the algorithm used to decrypt the DecryptionBuffer. The
following algorithm types are available:

IDEA_ALGORITHM IDEA™ algorithm
MARX_ALGORITHM MARX proprietary algorithm

DecryptionBuffer must contain NumberOfBytes so that the code works cor-
rectly.

SecretSeed and the selected AlgorithmType must be the same as for the encryp-
tion to receive correctly decrypted data.

MPI_Decrypt CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING Value AlgorithmType
WORD Value SecretSeed
WORD Value NumberOfBytes
CHAR* Reference DecryptionBuffer

MARX encryption algo-
rithms are hardware

specific. Be careful
when you switch from
one type of hardware

to another, because
encryption algorithm

incompatibility may be
encountered.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 122

123Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

In case of success (Return_code = 0) the DecryptionBuffer contains
NumberOfBytes bytes that have been decrypted using AlgorithmType.

Example:
{ DecryptionBuffer should hold a string encrypted with the same
seed }

AlgorithmType = "IDEA_ALGORITHM"
SecretSeed = hex 11117777
NumberOfBytes = length of (DecryptionBuffer)

Decrypt (AlgorithmType, SecretSeed, NumberOfBytes,
DecryptionBuffer)

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 123

124 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
The string of bytes in SourceBuffer is passed to the API and then encrypted eit-
her by CRYPTO-BOX or within the MPI library depending on the selected algo-
rithm, the encryption key type and the CRYPTO-BOX type. The algorithm depends
on the encryption key value (submitted by the MPI_SubmitEncryptionKey()
function or hardcoded in the CRYPTO-BOX) and/or system parameters that are
configured by MARX. Make sure to use identical encryption key values for encryp-
tion and decryption.

Two parameters describing resulting (destination) buffer will take care of the facts
that RSA is a block oriented algorithm. It's impossible to encrypt, e.g. a 117 bytes
string to the same size buffer. If you use a 64 bytes RSA key, the result will have
length divisible by 64. If 256 bytes key is used then the result's size should be divi-
sible by 256.

If DestinationBuffer is NULL or LenOfDestBuffer is NULL, it means that
SourceBuffer should be used to store encrypted data.

LenOfDestBuffer parameter should be passed "by reference" not "by value". If
its value is not enough to keep encrypted data the function will return
Return_Code = 0x1052 and this parameter will contain corrected value (number of
bytes required to store encrypted data).

MPI_EncryptEx CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING* Reference AlgorithmType
STRING* Reference EncryptionKeyType
DWORD Value LenOfSourceBuffer
LPVOID Reference SourceBuffer
DWORD* Reference pLenOfDestBuffer
LPVOID Reference DestinationBuffer

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 124

125Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Argument Description:
AlgorithmType defines the algorithm used to encrypt the SourceBuffer. The follo-
wing algorithm types are available (supported by the MPI):

IDEA_ALGORITHM IDEA™ algorithm
MARX_ALGORITHM MARX proprietary algorithm
RIJNDAEL_ALGORITHM Rijndael algorithm
RSA_ALGORITHM RSA algorithm

EncryptionKeyType defines the type of the encryption key used to decrypt the
SourceBuffer. The following key types are available:

For the IDEA_ALGORITHM:
IDEA_KEY
IDEA_EXTERN_KEY

For the MARX_ALGORITHM:
MARX_KEY
MARX_EXTERN_KEY

If being called with "extern" key, it means that software emulated version of the
algorithm should be used even if active MPI device (currently opened) supports
hardware implementation of the required algorithm.

For the RIJNDAEL_ALGORITHM:
RIJNDAEL_FIXED_KEY
RIJNDAEL_PRIVATE_KEY
RIJNDAEL_SESSION_KEY
RIJNDAEL_EXTERN_KEY

First three names assume hardware implemented Rijndael + corresponding key slot
usage: fixed/private/session (CBU or CBS should be open). The last one can be used
for any type of CRYPTO-BOX device. It assumes that an encryption key should be
submitted to the MPI prior to encryption/decryption call.

The CRYPTO-BOX USB
devices and the
CRYPTO-BOX Serial own
a hardware implemen-
ted AES/Rijndael algo-
rithm and support RSA
(except CBU Versa).
RSA keys will be stored
inside the CRYPTO-BOX
hardware, encryption
and decryption is pro-
cessed in the CBU devi-
ce driver. IDEA and
MARX (Blowfish) algo-
rithms are software
implemented (inside
MPI library).
The CRYPTO-BOX types
560/Net and Versa
parallel are supporting
AES/Rijndael and RSA
via software implemen-
tation, IDEA and MARX
algorithms are imple-
mented in hardware.

Note

MARX encryption algo-
rithms are hardware
specific. Be careful
when you switch from
one CRYPTO-BOX type
to another, because
encryption algorithm
incompatibility may be
encountered.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 125

126 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

For the RSA_ALGORITHM:
RSA_FIXED_PRIVATE_KEY
RSA_FIXED_PUBLIC_KEY
RSA_CBU_PRIVATE_KEY
RSA_CBU_PUBLIC_KEY
RSA_EXTERN_PRIVATE_KEY
RSA_EXTERN_PUBLIC_KEY

First four key names assume hardware implemented RSA. For RSA_FIXED fixed key
will be used, for RSA_CBU a proper key should be stored somewhere in the CBU
box memory (RAM1) before encryption. The key offset and length should be told
to the MPI prior to encryption/decryption call.

The RSA_EXTERN keys assume software emulated RSA algorithm. It can be used
for any MPI box. The corresponding RSA key should be submitted to the MPI prior
to encryption/decryption call.

DestinationBuffer must contain LenOfDestBuffer bytes (the same for
SourceBuffer and LenOfSourceBuffer), so that the code works correctly.

If DestinationBuffer is NULL, the SourceBuffer will be used to store encrypted
data.

Selected AlgorithmType and EncryptionKeyType must be the same as for the
encryption to receive correctly encrypted data.

All CRYPTO-BOX USB
devices for one custo-

mer are compatible
during encryption and

decryption with
RIJNDAEL_PRIVATE_KEY

or RSA algorithm
(except CBU Versa) as

long as the encryption
keys were not repro-

grammed with CBProg.
For the CRYPTO-BOX

types 560/Net and
Versa parallel all

FIXED_KEY, IDEA_KEY
and MARX_KEY are
depending from the

customer specific codes
(defined by MARX for

every customer).

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 126

127Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Results:
The Return_code is zero for successful operation. If Return_code = 0x1052, it
means that DestinationBuffer size is not enough. In this case LenOfDestBuffer con-
tains required size. For a Return_code other than zero and 0x1052, please, refer to
the section "10.6 Return Codes of CRYPTO-BOX devices" on page 113”.

In case of success (Return_code = 0), the DestinationBuffer contains
LenOfDestBuffer bytes that have been decrypted using AlgorithmType and
EncryptionKeyType.

Example:
AlgorithmType = "IDEA_ALGORITHM"
KeyType = "IDEA_EXTERN_KEY"
SecretSeed = hex 11117777
SubmitEncryptionKey(KeyType,length of(SecretSeed),
pointer to (SecretSeed), NULL)
EncryptionBuffer = "A sample string to encrypt"
NumberOfBytes = length of (EncryptionBuffer)

EncryptEx (AlgorithmType, KeyType, NumberOfBytes,
EncryptionBuffer, NULL, NULL)

{ The same buffer was used as a source and a target of encryp-
tion }

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 127

128 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
Obsolete function, use MPI_EncryptEx instead
The string in EncryptionBuffer is passed to the API and then encrypted either by
hardware or within the MPI library depending on the selected algorithm and the
MARX hardware type. The algorithm depends on the SecretSeed and/or system
parameters that are configured by MARX. Make sure to use identical seeds for
encryption and decryption.

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
AlgorithmType defines the algorithm used to encrypt the EncryptionBuffer. The
following algorithm types are available:

IDEA_ALGORITHM IDEA™ algorithm
MARX_ALGORITHM MARX proprietary algorithm

EncryptionBuffer must contain NumberOfBytes so that the code works cor-
rectly.
SecretSeed and the selected AlgorithmType must be the same as for the decryp-
tion to receive correctly decrypted data.

MPI_Encrypt CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING Value AlgorithmType
WORD Value SecretSeed
WORD Value NumberOfBytes
CHAR* Reference DecryptionBuffer

MARX encryption algo-
rithms are hardware

specific. Be careful
when you switch from
one type of hardware

to another, because
encryption algorithm

incompatibility may be
encountered.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 128

129Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Example:
AlgorithmType = "IDEA_ALGORITHM"
SecretSeed = hex 11117777
EncryptionBuffer = "A sample string to encrypt"
NumberOfBytes = length of (EncryptionBuffer)

Encrypt (AlgorithmType, SecretSeed, NumberOfBytes,
EncryptionBuffer)

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 129

130 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
This function can be used whenever an encryption key should be removed from
the pool. It is also useful to delete all previously submitted encryption keys as hak-
ker defense.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113. Encryption/Decryption functions that require the erased encryption keys
won't perform encryption/decryption based on these keys anymore and can only
be used after re-submission using the MPI_SubmitEncryptionKey function.

Argument Description:
EncryptionKey defines the key type. Possible values:

For the IDEA_ALGORITHM:
IDEA_EXTERN_KEY

For the MARX_ALGORITHM:
MARX_KEY
MARX_EXTERN_KEY

For the RIJNDAEL_ALGORITHM:
RIJNDAEL_EXTERN_KEY

For the RSA_ALGORITHM:
RSA_CBU_PRIVATE_KEY
RSA_CBU_PUBLIC_KEY
RSA_EXTERN_PRIVATE_KEY
RSA_EXTERN_PUBLIC_KEY

MPI_EraseEncryptionKey CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING* Reference EncryptionKey

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 130

131Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

To erase all keys submit ERASE_ALL.

Example:
The following pseudo code shows how to erase all encryption keys.

PasswordType = "ERASE_ALL"
MPI_EraseEncryptionKey (PasswordType)

For more detailed infor-
mation concerning
encryption keys see
MPI_SubmitEncryption
Key function descrip-
tion.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 131

132 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
This function can be used whenever a password should be removed from the pass-
word pool. It is also useful to delete all passwords as hacker defense.

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Functions that require the erased password won't be accessible anymore and can
only be accessed after re-submission using the MPI_SubmitPassword function.

Argument Description:
PasswordType defines the password type. Possible values:

For CBU and CBS:
PASSWORD_ID1 Read ID1
PASSWORD_ID2 Read ID2

For CBN/CBV:
PASSWORD_ID1 Read ID1
PASSWORD_ID2 Read ID2
PASSWORD_ID3 Read ID3 (CBN)
PASSWORD_ID4 Read ID4
PASSWORD_ID5 Read ID5
PASSWORD_ID6 Read ID6 (CBN)
PASSWORD_ID7 Read ID7 (CBN)
PASSWORD_ID8 Read ID8 (CBN)

MPI_ErasePassword CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING Value PasswordType

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 132

133Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Memory passwords:
PASSWORD_MEM1 To access RAM1
PASSWORD_MEM2 To access RAM2 (CBN)
To erase all passwords submit ERASE_ALL.

Example:
The following pseudo code shows how to erase all access passwords.

PasswordType = "ERASE_ALL"
MPI_ErasePassword (PasswordType)

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 133

134 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
This function generates unique pair of RSA keys (private and public). RSA keys of
this pair can be used further for RSA encryption/decryption (see
MPI_EncryptEx/MPI_DecryptEx: RSA_ALGORITHM). You can store generated
keys of this pair somewhere in the program memory (loaded from external memo-
ry) or they can be stored in the CRYPTO-BOX memory (MPI_WriteMem).

If the CRYPTO-BOX USB is currently open and RSA keys were written to its memo-
ry they should be referred as RSA_CBU_PRIVATE_KEY and/or
RSA_CBU_PUBLIC_KEY for encryption.

If keys are stored in the program memory they should be referred as:
RSA_EXTERN_PRIVATE_KEY and/or RSA_EXTERN_PUBLIC_KEY.

Argument Description:
RSAKeyLength - number of bits for RSA modulus (RSA Key length).
Only one of the following values can be used (defined in MPI.H):

2048 bit - MPI_RSA_KEY_MODULUS_2048
1024 bit - MPI_RSA_KEY_MODULUS_1024
512 bit - MPI_RSA_KEY_MODULUS_512

PrivateKeyBuffer - buffer to store generated RSA private key: its size must be not
less than: (2 + ((RSA_KeyBits / 8) * 2)) bytes. You can use
MPI_RSA_KEY_BUF_LEN(x) (see MPI.H) to define its size.

PublicKeyBuffer - buffer to store generated RSA public key: its size also must be
not less than: (2 + ((RSA_KeyBits / 8) * 2)) bytes. The same macro could be used.

KeyBufferLength - length (in bytes) of allocated buffer for public or private key

MPI_GenerateKeyPairRSA CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
DWORD Value RSAKeyLength
LPVOID Reference PrivateKeyBuffer
LPVOID Reference PublicKeyBuffer
DWORD* Reference KeyBufferLength

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 134

135Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

(if these buffers have different size - smallest of sizes should be specified).
After execution contains actual key size. The same expression can be used for its
calculation: (2 + ((RSA_KeyBits / 8) * 2)) bytes.

Results:
The Return_code is zero for successful operation. If Return_code = 0x1052, the
size of one or both buffers is not enough. For a Return_code other than zero and
0x1052, please refer to the section "10.6 Return Codes of CRYPTO-BOX devices"
on page 113.

In case of success (Return_code = 0), the PrivateKeyBuffer contains generated
private key and PublicKeyBuffer - public key. The KeyBufferLength contains
RSA key length in bytes.

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 135

136 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
Identifier - device Handle obtained by MPI_SearchFirst()/SearchNext() calls.
Model - returns model info for CRYPTO-BOX USB:
• 1 - CBU VERSA
• 2 - CBU XS
• 3 - CBU XL
• 4 - CrypToken OEM XS
• 5 - CrypToken OEM XL

MemorySize - returns available memory size in bytes

MPI_GetBoxInfo CBU,CB560/Versa,CBS

Argument List: Type Passed by Description
DWORD Value Identifier
WORD* Reference Model
DWORD* Reference MemorySize

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 136

137Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
This function retrieves the CRYPTO-BOX type that is using the active channel.

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
BoxType returns:

CBU for CRYPTO-BOX USB
CBV for a CRYPTO-BOX Versa
CBN for a CRYPTO-BOX 560
CBS for a CRYPTO-BOX Serial

Example:
The following sample in pseudo code shows how to find out what kind of securi-
ty device is using the active channel. Remember to establish a communication
channel first.

ErrorCode = MPI_GetBoxType (BoxType)

If ErrorCode == MPI_SUCCESS then
Print "BoxType = ", BoxType

Else print "Error = ", ErrorCode

Argument List: Type Passed by Descritpion
STRING10 Reference BoxType

MPI_GetBoxType CBU, CB560/Versa, CBS

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 137

138 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
Returns a unique ID assigned by MARX to each customer. Do not confuse it with
a serial number. The developer ID is the same for ALL CRYPTO-BOX devices of a
batch shipped to a MARX customer.

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
DeveloperID uniquely identifies each MARX customer.

MPI_GetDeveloperId CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
DWORD Reference DeveloperID

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 138

139Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
To find out the driver version of the CRYPTO-BOX that is using the active channel.
It is not necessary to open a channel via MPI_Open to call this function. However,
MPI_SearchFirst or MPI_SearchNext should be called to get an Identifier.

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
Identifier A valid Identifier obtained from MPI_SearchFirst or

MPI_SearchNext.

DrvVersion will hold the driver version.

MPI_GetDrvVersion CB560/Versa

Argument List: Type Passed by Description
DWORD Value Identifier
DWORD Reference DrvVersion

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 139

140 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
This function calculates hash value for submitted source buffer. Can be used in dif-
ferent password/user authorization/verification solutions. Typical scenarios are:
• UNIX password management: system stores not real passwords but hash values

calculated from passwords;
• Challenge response authentication approach:
- a random number is sent by a server to a client;
- the client concatenates this number to the password, calculates hash and

sends this hash value back to the server;
- server performs the same operations and compares hashes.

Argument Description:
AlgorithmType defines the algorithm used. Only one algorithm is currently sup-
ported: MD4_ALGORITHM.

SourceBufLength defines the size of source buffer.

SourceBuffer must contain this number of bytes to make the algorithm works
correctly.

HashBufLength must be at least 32 bytes (MPI_MD4_HASH_BUF_LEN).

HashBuffer addresses buffer to contain calculated hash string.

MPI_GetHash CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING* Reference AlgorithmType
WORD Value SourceBufLength
LPVOID Reference SourceBuffer
WORD* Reference HashBufLength
LPVOID Reference HashBuffer

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 140

141Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

In case of success (Return_code = 0), the HashBuffer contains hash value - string
of 32 bytes calculated for the contents of SourceBuffer.

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 141

142 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
To retrieve the error code of the latest function call and a corresponding error mes-
sage.

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
LastError returns the error code of the latest function call.

ErrorMessage returns an error message as a NULL-terminated string.

Example:
ErrorCode = 0; ErrorMessage = ""

MPI_Open (Identifier)
MPI_GetLastError (ErrorCode, ErrorMessage)
Print "Error=", ErrorCode, ": ", ErrorMessage

MPI_GetLastError CBU, CB560/Versa, CBS

Argument List: Typ Passed by Description
DWORD* Reference LastError
STRING80 Reference ErrorMessage

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 142

143Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
This function allows you to find out about the number of available user licenses. It
can be used any time a remote channel is open.

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

In case of success, the remote access to a CRYPTO-BOX device will include your
parameter.

Argument Description:
Identifier is a valid Identifier obtained from MPI_SearchFirst or MPI_SearchNext
functions.

MaximumLicenses returns the max number of user licenses.

UsedLicenses returns the number of licenses currently used.

Example:
Identifier = 0
MaximumLicenses = 0
UsedLicenses = 0
MPI_GetLicenseInfo(Identifier, MaximumLicenses, UsedLicenses)
print UsedLicenses + "of "+ MaximumLicenses+"are used"

MPI_GetLicenseInfo CBU, CB560, CBS – NETWORK ONLY

Argument List: Type Passed by Description
DWORD Value Identifier
DWORD Reference MaximumLicenses
DWORD Reference UsedLicenses

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 143

144 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
This function allows you to query a specified network parameter. The string format
allows easy display of parameters as server name, timeout and UDP port.

Please refer to MPI_SetNetworkParameter for further explanations.

Results:
The Return_code is zero for successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

In case of success, the remote access to a CRYPTO-BOX device will include your
parameter.

Argument Description:
The following NetworkParameters can be queried:
SERVER, PROTOCOL, TIMEOUT, CLIENT_UDP_PORT, SERVER_UDP_PORT

"SERVER" Specifies server name(s) or address(es).

"PROTOCOL" Specifies the network protocol.

"TIMEOUT" Specifies Network timeout in milliseconds.

"CLIENT_UDP_PORT" Client UDP port for receiving.

"SERVER_UDP_PORT" Server UDP port for listening.

MPI_GetNetworkParameter CBU, CB560, CBS – NETWORK ONLY

Argument List: Type Passed by Description
STRING Value NetworkParameter
STRING Reference ParameterValue

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 144

145Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
This function allows you to obtain a random sequence of bytes desired length.
The hardware implemented internal random generator will be used if CBU device
is open, in other case random sequence will be generated by the MPI.

Please refer to MPI_SetNetworkParameter for further explanations.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113

In case of success the Buffer will be filled by a random sequence.

MPI_GetRandomSequence CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
DWORD Value Len
LPVOID Reference Buffer

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 145

146 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
Returns a unique serial number assigned by MARX to each CRYPTO-BOX USB XS
or XL.. Do not confuse it with a Developer ID. The Developer ID is the same for ALL
CRYPTO-BOX devices of a batch shipped to a MARX customer.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
SerialNumber uniquely identifies each CRYPTO-BOX device (if supported by the
chosen CRYPTO-BOX type).

MPI_GetSerialNr CBU,CB560, CBS

Argument List: Type Passed by Description
DWORD Reference SerialNumber

For CBU Versa the Serial
number is the same for

all modules of one
batch.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 146

147Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
Opens a communication channel with a CRYPTO-BOX. Before you call MPI_Open
you need to
• submit access codes via MPI_SubmitPassword;
• set a channel via MPI_SetChannel and
• search for MARX hardware via MPI_SearchFirst.
• For remote access MPI_SetNetworkParameter() needs to be called before

MPI_Open().

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
Identifier is a valid Identifier obtained from MPI_SearchFirst or MPI_SearchNext
functions.

Example:
The following pseudo code sample illustrates how to open a communication chan-
nel for a CRYPTO-BOX device.

{ MPI_Open takes one parameter. This parameter is an Identifier
returned by MPI_SearchFirst or MPI_SearchNext. Use "0" as
Identifier if you do not want to use MPI_SearchFirst}
ErrorCode = MPI_Open(Identifier)
…
{ close the active channel }
MPI_Close (Identifier)

MPI_Open CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
DWORD Value Identifier

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 147

148 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
MPI interface to Data Objects. Allows to create (SET) required object, read its cur-
rent value (GET), check/verify it, increment/decrement value.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
ObjectType is a valid Data Object type. Currently the following types are suppor-
ted:
• Expiration Date (MPI_DO_EXPIRATION_DATE) - allows to SET date after which

protected program/module (or feature) will be expired;
• Number of Days (MPI_DO_NUMBER_OF_DAYS) - number of days, after which

protected program/module (or feature) will be expired - unlike Expiration Date
is a relative value - allowed period starts after activation;

• Time Allowed (MPI_DO_TIME_ALLOWED) - helps to limit program/feature by
usage time (say, it is allowed to use a progam for 10 hours);

• Usage Counter (MPI_DO_USAGE_COUNTER) - allows to control number of
execution/launches for a program/feature;

• Memory Object (or User Defined Object) (MPI_DO_MEMORY) - convenient
container for secure storage of any structured data - like personal info, financi-
al info, etc.

MemoryBank - number of memory bank (1 or 2) - actual for CBN devices only.

MemoryAddress - object's address in the device memory.

MPI_ProcessDataObject CBU,CB560/Versa,CBS

Argument List: Type Passed by Description
DWORD Value ObjectType
DWORD Value MemoryBank
DWORD Value MemoryAddress
DWORD Value Operation
LPVOID Reference pObjectData
DWORD * Reference pDataLen
LPVOID Reference pDOBuffer

Please refer to the sam-
ple programs in the

\samples subdirectory
of the MARX PPK,

which contains source
code for a sample pro-

gram "datatobj" that
demonstrates the usage

of Data Objects for
Visual C, Visual Basic,

Delphi and many more
Windows programming

environments.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 148

149Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Operation - required operation/method:
• SET (MPI_DO_OP_SET) is implemented for all object types. Allows to set value

- initialize/update object;

• GET (MPI_DO_OP_GET) also valid method for all types of objects. Allows to
read current value;

• INCREMENT (MPI_DO_OP_INC) increments current value of the object: <days>
for Expiration Date and Number of Days, <secs> for Time Allowed, number of
runs for Usage Counter;

• DECREMENT (MPI_DO_OP_DEC) decrements current value of the object:
<days> for Expiration Date and Number of Days, <secs> for Time Allowed,
number of runs for Usage Counter;

• VERIFY (MPI_DO_OP_VERIFY) - checks current object's value - for all predefi-
ned types;

• CLEAR (MPI_DO_OP_CLEAR) - clears current value - for all predefined types;

• UNLIMITED (MPI_DO_OP_UNLIMITED) - sets object's value to "unlimited".

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 149

150 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
To retrieve the value of an ID code. To get a successful response, you need to sub-
mit a correct access code that is required to read the specified ID. The number of
available ID codes is different for the several CRYPTO-BOX types.

You can find an overview for the CRYPTO-BOX shipped with your evaluation kit in
"Appendix A: Codes of a CRYPTO-BOX® Evaluation Key" at page 173. For your
customer specific CRYPTO-BOX you will get additionally a production sheet with
your customer specific ID codes.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
IdNr number of an ID. Remember to submit a correct access code to retrieve the
value of the ID.

IdCode returns the value of the requested ID.

Example:
In the following sample we will read the value of ID1. Remember: a communica-
tion channel should be opened by now.

IdNr = 1 { read ID1 }
IdCode = 0 { IdCode will return the value of ID1 }

ErrorCode = MPI_ReadID (IdNr, IdCode)
if ErrorCode = MPI_SUCCESS then
print "ID1 = ", IdCode
else

print "Error = ", ErrorCode

MPI_ReadID CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
DWORD Value IdNr
DWORD Reference IdCode

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 150

151Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
To read an area of the CRYPTO-BOX memory (RAM). The call will not be comple-
ted successfully unless you submit correct access codes via MPI_SubmitPassword.
You need to submit both the ID1 and the RAM passwords to be able to work with
the CRYPTO-BOX memory.

The size of the CRYPTO-BOX memory depends from the model. You will find an
overview under "Appendix: Technical Data" beginning at page 178.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113

Argument Description:
MemoryNr can be one of the following:

• MPI_MEMORY_NR1or/and MPI_MEMORY_NR2 for CBN
• MPI_MEMORY_NR1 only for CBV

MemoryAddress is a 0-based value. The total amount of available memory
depends on the type of the security device.

BufferLength is the length of the buffer to hold returned data.

DataBuffer returns the data that has been read from the memory of the security
device.

MPI_ReadMem CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
DWORD Value MemoryNr
DWORD Value MemoryAddress
DWORD Value BufferLength
CHAR* Reference DataBuffer

The CRYPTO-BOX
memory content will
remain unchanged also
when the CRYPTO-BOX
is removed from the
computer or the PC is
switched off.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 151

152 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Example:
The following sample demonstrates how to read a 20-byte buffer at physical off-
set 10 from RAM1 of a CRYPTO-BOX device.

MemoryNr = MPI_MEMORY_NR1
{start reading at physical memory offset 10 }
MemoryAddress = 10
{read 40 bytes of data }
BufferLength = 20
DataBuffer = " "
MPI_ReadMem (MemoryNr, MemoryAddress, BufferLength,

DataBuffer)

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 152

153Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
To search for the first available MARX Hardware that is accessible through the 1st
ID password. This password must be submitted via SubmitPassword before calling
this function.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

HardwareType returns
CBU (for a CRYPTO-BOX USB)
CBV (for a CRYPTO-BOX Versa)
CBN (for a CRYPTO-BOX 560)
CBS (for a CRYPTO-BOX Serial)

Local Port values can be
PCMCIA
COM1, COM2, COM3, COM4
LPT1, LPT2, LPT3, LPT4
USB

Remote (=network) Port returns can be any server name or server address in a
network.

Argument Description:
HardwareType describes the CRYPTO-BOX type attached.

Port describes the local port (USB, COM, LPT,) the CRYPTO-BOX is attached to or,
in a network the server and protocol that responded to a network request.

MPI_SearchFirst CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING10 Reference HardwareType
STRING10 Reference Port
DWORD Reference Identifier

Using MPI_SearchFirst /
MPI_SearchNext to
identify CRYPTO-BOX
modules with the same
customer specific codes
works only for the CBU
XS and XL. For all other
CRYPTO-BOX types
always the FIRST device
which was found by
MPI will return an
answer.

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 153

154 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Identifier is needed to connect to exactly the CRYPTO-BOX that was found via
MPI_SearchFirst or MPI_SearchNext.

Example:
The following sample shows how to look up specified CRYPTO-BOX devices.
Before calling MPI_SearchFirst you need to set a channel via MPI_SetChannel
and submit correct access code(s) via MPI_SubmitPassword.

HardwareType = ""
Port = ""
Identifier = 0
{ some functions you will be calling later on will need this
Identifier }

ErrorCode = MPI_SearchFirst (HardwareType, Port, Identifier)
If ErrorCode == MPI_SUCCESS

print "Device type = ",HardwareType
print "Port = ", Port
print "Identifier = ", Identifier

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 154

155Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
To search for the next available CRYPTO-BOX that is accessible through the 1st ID
password. You need to call MPI_SearchFirst to start the look-up process before
calling this function.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

HardwareType returns
CBU (for a CRYPTO-BOX USB)
CBV (for a CRYPTO-BOX Versa)
CBN (for a CRYPTO-BOX 560)
CBS (for a CRYPTO-BOX Serial)

Local Port returns can be
USB
COM1, COM2, COM3, COM4
LPT1, LPT2, LPT3, LPT4

Remote (=network) Port returns can be any server name or server address in a net-
work.

MPI_SearchNext CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING10 Reference HardwareType
STRING10 Reference Port
DWORD Reference Identifier

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 155

156 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Argument Description:
HardwareType describes the type of CRYPTO-BOX type attached.

Port describes the local port (USB, COM, LPT) the CRYPTO-BOX is attached to or
stands for the server and protocol that makes the CRYPTO-BOX available in a net-
work.

Identifier is needed to connect to exactly the CRYPTO-BOX that was found via
MPI_SearchFirst or MPI_SearchNext.

Example:
See sample for MPI_SearchFirst.

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 156

157Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
All CRYPTO-BOX types can be accessed through the MPI. This function allows con-
trol over the various channels that are available. A channel is defined by the
HardwareType and the port (local or remote) that the hardware is connected to.
The latter is represented by the Port parameter.

This function is the key to the flexibility of the MPI interface and allows an easy
switch between solutions just by changing the MPI_Channel. Channels can be
dedicated or non-dedicated and the order of channel submission defines the
search order. This way multiple CRYPTO-BOX devices can be accessed without a
single line of code that needs to be changed.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

In case of success the system is initialized on the software level. No physical access
occurs. The API is set up for further operation with MPI_SearchFirst.

MPI_SetChannel CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING Value HardwareType
STRING Value Port
VOID Reference NotUsed

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 157

158 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Argument Description:
The HardwareType is a descriptor of the CRYPTO-BOX used with one of the fol-
lowing values:
AUTO find ANY CRYPTO-BOX automatically

(allow processing time!)
CBU (CRYPTO-BOX USB)
CBV (CRYPTO-BOX Versa)
CBN CRYPTO-BOX 560)
CBS (CRYPTO-BOX Serial)

The Port defines the physical or remote port that the CRYPTO-BOX is connected
through. This parameter can have one of the following values:

Local ports:
AUTO access any available LPT, COM, USB port.
USB access any USB port
LPT access any LPT port available
LPT1 access LPT 1
LPT2 access LPT 2
LPT3 access LPT 3
COM access any COM port available
COM1 access COM1
COM2 access COM2
COM3 access COM3

Remote ports:
AUTONET any server via any available network protocol
SPX_IPX via IPX/SPX protocol
TCP_IP via TCP/IP protocol
NETBIOS via NetBIOS protocol

Example 1:
HardwareType = "CBN"
LocalPort = "AUTO"
Reserved = 0
MPI_SetChannel (HardwareType, LocalPort, Reserved)

This code snippet initializes a system to look for a CRYPTO-BOX 560 on any local

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 158

159Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

port that is available. This function goes hand-in-hand with MPI_SubmitPassword
and MPI_SearchFirst.

Here we set the channel to access SMARX-CARDs via any available smart card
reader channel.

Example 2:
HardwareType = "CBN"
LocalPort = "AUTO"
RemotePort = "AUTONET"
Reserved = 0
MPI_SetChannel (HardwareType, LocalPort, Reserved)
RemotePort = "AUTONET"
MPI_SetChannel (HardwareType, RemotePort, Reserved)

Here we initialize a system that that checks first the presence of a CRYPTO-BOX
560 on all available local ports and then on the remote (=network) ports.

Example 3:
HardwareType = "CBN"
RemotePort = "AUTONET"
Reserved = 0
MPI_SetChannel (HardwareType, RemotePort, Reserved)

Here we initialize a system that we look first for a CRYPTO-BOX 560 on all availa-
ble remote ports (=network) ports. The default search order defined by AUTONET
is TCP/IP, IPX/SPX and NetBIOS.

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 159

160 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
This function allows you to configure network specific parameters as server addres-
ses, server names and protocol settings.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

In case of success, the remote access to a CRYPTO-BOX device will include your
parameter.

Argument Description:
The following NetworkParameters are available and described below.
SERVER, PROTOCOL, TIMEOUT, CLIENT_UDP_PORT, SERVER_UDP_PORT

"SERVER"
Specifies server name(s) or address(es) of the CRYPTO-BOX Server (CBNet Server).

Example:
MPI_SetNetworkParameter("SERVER","AURORA");
Possible server identification ways:
"*" - all servers;
"10.10.10.10" - specified by IP address;
"AURORA" - specified by name;
"10.10.10.10 267.11.13.197 AURORA" - list of servers separated by spaces.

"PROTOCOL" Specifies the network protocol
Example:
char NetProtocol[32];
MPI_GetNetworkParameter("PROTOCOL",NetProtocol);

MPI_SetNetworkParameter CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING Value NetworkParameter
STRING Value ParameterValue

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 160

161Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

"TIMEOUT" Specifies Network timeout in milliseconds.
Maximum time that client is waiting for answer from server.
Default value: 2 seconds.
Example (sets timeout to 5 seconds):
MPI_SetNetworkParameter("TIMEOUT","5000")

"CLIENT_UDP_PORT" Client UDP port for receiving:
Default value: 8765.
Example (sets client UDP port to 8000 port):
MPI_SetNetworkParameter("CLIENT_UDP_PORT","8000")

"SERVER_UDP_PORT" Server UDP port for listening:
Default value: 8766.
Example:
MPI_SetNetworkParameter("SERVER_UDP_PORT","8001")
Sets the server UDP port to 8001 port.
The following NetworkValues are reserved
DELETE deletes a parameter entry
DEFAULT sets a parameter to default value

Example 1:
The following pseudo code sets the server IP address. Every TCP/IP access to a
CBNet Srver will use this address.

NetworkParameter = "SERVER"
ParameterValue = "10.10.10.10"
RetVal = 0
MPI_SetNetworkParameter(NetworkParameter, ParameterValue)

Example 2:
You can combine multiple addresses by separating IP addresses by spaces.

NetworkParameter = "SERVER"
ParameterValue = "10.10.10.10 267.11.13.197"
MPI_SetNetwork(NetworkParameter, ParameterValue)

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 161

162 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
This function is similar to the MPI_SubmitPasswordEx () function. It allows to
submit encryption key for its further utilization by the proper encryption algorithm
(see MPI_EncryptEx() and MPI_DecryptEx() functions).

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
EncryptionKeyType defines the type of the encryption key.
Possible values are:

IDEA_KEY
IDEA_EXTERN_KEY
MARX_KEY
MARX_EXTERN_KEY
RIJNDAEL_PRIVATE_KEY
RIJNDAEL_SESSION_KEY
RIJNDAEL_EXTERN_KEY
RSA_CBU_PRIVATE_KEY
RSA_CBU_PUBLIC_KEY
RSA_EXTERN_PRIVATE_KEY
RSA_EXTERN_PUBLIC_KEY

The function interpretation by the MPI strongly depends on:
a) type of open CRYPTO-BOX device;
b) related algorithm.

MPI_SubmitEncryptionKey CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING* Reference EncryptionKeyType
DWORD Value Len
LPVOID Reference EncryptionKey
DWORD Value Offset

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 162

163Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Encryption key submission for hardware implemented algorithm is allowed only if
a proper CRYPTO-BOX (supporting this algorithm) is currently open.

All "_EXTERN_" keys assume usage of software emulated algorithms and can be
used for any type of CRYPTO-BOX. It is necessary to submit a proper encryption
key before calling one of these algorithms (MPI_EncryptEx()/MPI_DecryptEx()).

The RIJNDAEL_FIXED key (active CRYPTO-BOX USB is assumed) has one unchan-
geable value of the fixed key stored in the box system memory. So, encrypt/decrypt
should be called without submitting a key first.

The RIJNDAEL_SESSION and RIJNDAEL_PRIVATE keys are hardware implemen-
ted for the CBU. Encryption/decryption can be used without submission of an
encryption key. Although it is possible to call the MPI_SubmitEncryptionKey() to
change the value of the key.

For the RSA_CBU keys (open CRYPTO-BOX USB is assumed) it is necessary to call
the MPI_SubmitEncryptionKey () before Encryption/Decryption itself. There are
two possible scenarios depending on the EncryptionKey pointer value.

If EncryptionKey pointer is NULL, it means that application specifies offset and
length for the already existing RSA key (stored in the CBU memory). If this pointer
is not NULL, it means that the key should be written to the CBU memory. The
Offset parameter value will be used for offset.

So, the Offset parameter value is actual only for RSA_CBU keys to define correct
location of the submitted key in the CBU internal memory. For other types of keys
it is meaningless and can be 0.

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 163

164 10. MPI Reference Function calls

Example:
The following pseudo code shows how to submit an encryption key for its further
usage for encryption/decryption by software emulated MARX algorithm.

KeyType = "MARX_EXTERN_KEY"
Key = hex 2a2b2c2d
MPI_SubmitEncryptionKey(KeyType,length of (Key), Key, 0)
{Offset is required only for RSA_CBU keys to define correct
location of the submitted key in the CBU internal memory}.

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 164

Usage:
To submit passwords so that a CRYPTO-BOX can be accessed, ID codes can be
checked or memory accessed.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
PasswordType defines the password type. Possible values:

For CBU and CBS:
PASSWORD_ID1 Read ID1
PASSWORD_ID2 Read ID2

For CBN/CBV:
PASSWORD_ID1 Read ID1
PASSWORD_ID2 Read ID2
PASSWORD_ID3 Read ID3 (CBN)
PASSWORD_ID4 Read ID4
PASSWORD_ID5 Read ID5
PASSWORD_ID6 Read ID6 (CBN)
PASSWORD_ID7 Read ID7 (CBN)
PASSWORD_ID8 Read ID8 (CBN)

Memory passwords:
PASSWORD_MEM1 To access RAM1
PASSWORD_MEM2 To access RAM2 (CBN)

MPI_SubmitPassword CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING Value PasswordType
STRING Value AccessMode
DWORD Value Password

165Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

This function allows to
submit password only
as DWORD type values.
Because of this limita-
tion, this function is not
suitable for the
CRYPTO-BOX USB!
Please use the function
MPI_SubmitPasswordEx
() instead to submit
password as a string of
bytes!

Note

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 165

166 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

CRYPTO-BOX devices have passwords to read an ID code and to access memory.
Furthermore, functions such as expiration date checks and usage counters can be
protected with access codes that need to be submitted BEFORE calling any func-
tion that requires passwords.

AccessMode can be one of the following:
READ Allows to read IDx.
WRITE Allows to read from and write to the memory.

Example 1:
The following pseudo code shows how to submit a password and accesses memo-
ry section 1 of an CBN/CBV with demo memory access password.

PasswordType = "PASSWORD_MEM1"
AccessMode = "WRITE"
Password = hex a1a2a3a4
MPI_SubmitPassword (PasswordType, AccessMode, Password)
MPI_WriteMem (we discuss these parameters elsewhere)

Example 2:
The following pseudo code shows how to submit a password to check ID 1 of a
CRYPTO-BOX.

PasswordType = "PASSWORD_ID1"
AccessMode = "READ"
Password = hex 111213
MPI_SubmitPassword (PasswordType, AccessMode, Password)
MPI_ReadID (we discuss these parameters elsewhere)

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 166

167Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
To submit passwords so that a CRYPTO-BOX can be accessed, ID codes can be
checked or memory accessed. This function allows to submit password of a varia-
ble length as a string of bytes in contrast to MPI_SubmitPassword() function,
which assumes password as a DWORD value only. Variable length PASSWORD_ID1
is very important for the CRYPTO-BOX USB device.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
PasswordType defines the password type. Possible values:

For CBU and CBS:
PASSWORD_ID1 Read ID1
PASSWORD_ID2 Read ID2

For CBN/CBV:
PASSWORD_ID1 Read ID1
PASSWORD_ID2 Read ID2
PASSWORD_ID3 Read ID3 (CBN)
PASSWORD_ID4 Read ID4
PASSWORD_ID5 Read ID5
PASSWORD_ID6 Read ID6 (CBN)
PASSWORD_ID7 Read ID7 (CBN)
PASSWORD_ID8 Read ID8 (CBN)

MPI_SubmitPasswordEx CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING Value PasswordType
STRING Value AccessMode
LPVOID Value Password
DWORD Reference PasswordLen

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 167

168 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Memory passwords:
PASSWORD_MEM1 To access RAM1
PASSWORD_MEM2 To access RAM2 (CBN)

CRYPTO-BOX devices have passwords to read an ID code and to access memory.
Furthermore, functions such as expiration date checks and usage counters can be
protected with access codes that need to be submitted BEFORE calling any func-
tion that requires passwords.

AccessMode can be one of the following:
READ Allows to read IDx.
WRITE Allows to read from and write to the memory.

PaswordLen length of password string

Password string of bytes, containing password

Example:
The following pseudo code shows how to submit how to submit a password to
check ID 1 of a CRYPTO-BOX USB with demo access password.

PasswordType = "PASSWORD_ID1"
AccessMode = "READ"
Password = [0x64,0x65,0x6D,0x6F] {"demo"}
PasswordLen = length of (Password) {4}
{ Password - reference to a byte sequence (array)

PasswordLen - length of the array (number of bytes)
}
MPI_SubmitPasswordEx (PasswordType, AccessMode, Password,

PasswordLen)

MPI_ReadID (we discuss these parameters elsewhere).

It is also possible to use this function for CBN/CBV:

…
Password = [0x11,0x12,0x13]
PasswordLen = length of (Password) {3}
…

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 168

169Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
To look for any CRYPTO-BOX device that is available - locally or remotely. If this
function doesn't find anything it is not worth looking any further. No passwords
are necessary. This is a presence check that doesn't make a difference between
hardware with DEMO configuration or hardware that is issued for a specific custo-
mer. Every CRYPTO-BOX will respond and the number of attached hardware types
can be determined too. Expect a little longer response time for this function when
setting both ports and hardware type to AUTO or AUTONET in MPI_SetChannel,
because of the large variety of solutions MARX provides.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

In case of success, HardwareType contains the MARX hardware type that was
found last, PortType contains the name of the port where the hardware was
detected, and NumberOfTypes contains the number of Marx Hardware types
found.

Argument Description:
HardwareType contains the MARX hardware type that was found last:

CBU (CRYPTO_BOX USB)
CBN (CRYPTO-BOX 560)
CBS (CRYPTO-BOX Serial)
CBV (CRYPTO-BOX Versa)

MPI_WhatIsAvailable CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
STRING10 Reference HardwareType
STRING10 Reference PortType
DWORD Reference NumberOfTypes

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 169

170 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

PortType contains a string representation of the port where CRYPTO-BOX was
found.

NumberOfTypes contains the number of CRYPTO-BOX types found.

Example:
The following pseudo code initializes two parameters with zero and passes them
to the API. As they are passed by reference, they contain values for the type of
hardware and the number of hardware keys found.

MPI_SetChannel ("CBN", "AUTO", 0)
MarxHardwareType = "No Hardware found"
Found = 0
if MPI_WhatIsAvailable(MarxHardwareType, PortType, FoundSoFar) =
0
then
print "Found" + FoundSoFar + "MARX hardware keys on" + PortType
print "The last hardware found was of type" + MarxHardwareType
endif

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 170

171Function calls MPI Reference 10.

Copyright © 2002, 2004 MARX® CryptoTech LP

Usage:
To write an area of CRYPTO-BOX memory (RAM) . The call will not be completed
successfully unless you submit correct access codes via MPI_SubmitPassword.
You need to submit both the ID1 and the RAM passwords to be able to work with
the CRYPTO-BOX memory.

Results:
The Return_code is zero for a successful operation. For a Return_code other than
zero please refer to the section "10.6 Return Codes of CRYPTO-BOX devices" on
page 113.

Argument Description:
MemoryNr can be one of the following:
• MPI_MEMORY_NR1 or/and MPI_MEMORY_NR2 for CBN
• MPI_MEMORY_NR1 only for CBV

MemoryAddress is a 0-based value. The total amount of available memory
depends on the type of the security device.

BufferLength is the length of the buffer to hold returned data.

DataBuffer returned the data that has been read from the memory of the securi-
ty device.

MPI_WriteMem CBU, CB560/Versa, CBS

Argument List: Type Passed by Description
DWORD Value MemoryNr
DWORD Value MemoryAddress
DWORD Value BufferLength
CHAR* Reference DataBuffer

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 171

172 10. MPI Reference Function calls

Copyright © 2002, 2004 MARX® CryptoTech LP

Example:
The following sample demonstrates how to write a 20-byte buffer at physical off-
set 10 from memory 1 of a CRYPTO-BOX.

MemoryNr = MPI_MEMORY_NR1
{ start reading at physical memory offset 10 }
MemoryAddress = 10
BufferLength = 20 { write 20 bytes of data }
DataBuffer = "12345678901234567890"
MPI_WriteMem (MemoryNr, MemoryAddress, BufferLength, DataBuffer)

0-01MAR04_ks(PPK_MPI_Ch10.qxp 3/11/2004 2:05 PM Page 172

* Codes are programm-
able with AutoCrypt
Wizard or CBProg.

Note

173Codes Appendix 11.

Copyright © 2002, 2004 MARX® CryptoTech LP

Appendix A: Codes of a CRYPTO-BOX

Codes of a CRYPTO-BOX USB - and
Serial Evaluation Kit

11. Appendix

In this Appendix you will find technical data and specifications of the CRYPTO-BOX
system

Reference Value (hex) Value (dez) Description
PWM „admin“ (as

String)
Master Password

PW_RAM 2A2B2C2D 707472429 Password for read/write access to
the CRYPTO-BOX memory

ScodeID1 „demo“ (as Security code for ID1
String) or (necessary to open CRYPTO-BOX
64656D6F (hex)

IDCode1 11121314 286397204 ID-Code 1
ScodeID2* 22222222 572662306 Security Code for ID2
IDCode2* 21222324 555885348 ID Code 2

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 173

174 11. Appendix Codes

Copyright © 2002, 2004 MARX® CryptoTech LP

Codes of a CRYPTO-BOX 560/Net, Versa
Evaluation Kit

Reference Value Description
PWM f1f2f3f4f5 hex Master Password (fixed)
SCodeSER 4142 hex security code to get the serial

(identical for number or batch code
all keys!) (fixed)

SerNum 434445 hex serial number (fixed)
PW_RAM1 a1a2a3a4 hex password for read/write access

to the CB-memory RAM1 (fixed)
PW_RAM2* a1a2a3a4 hex password for read/write access

to the CB-memory RAM2 (var.)
ScodeID1 111213 hex security code for ID1 (fixed)
ID_Code1 1415 hex ID1 (fixed)
ScodeID2 212223 hex security code for ID2 (fixed)
ID_Code2 2425 hex ID2 (fixed)
ScodeID3* 313233 hex security code for ID3 (fixed)
ID_Code3* 3435 hex ID3 (fixed)
ScodeID4 414243 hex security code for ID4 (var.)
ID_Code4 4445 hex ID4 (var.)
ScodeID5 515253 hex security code for ID5 (var.)
ID_Code5 5455 hex ID5 (var.)
ScodeID6* 616263 hex security code for ID6 (var.)
ID_Code6* 6465 hex ID6 (var.)
ScodeID7* 717273 hex security code for ID7 (var.)
ID_Code7* 7475 hex ID7 (var.)
ScodeID8* 818283 hex security code for ID8 (var.)
ID_Code8* 8485 hex ID8 (var.)

* Codes are only availa-
ble for the CRYPTO-BOX
560/Net, “fixed” means
that codes are not pro-

grammable, “var”
means that codes are
programmable using

the AutoCrypt Wizard
or CBProg utility.

Note

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 174

175Conversions Appendix 11.

Copyright © 2002, 2004 MARX® CryptoTech LP

Appendix B: Converting to Hexadecimal Numbers

The easiest way to do conversions from hex to dec and vice versa is using the cal-
culator delivered with Windows. To convert a number manually multiply each digit
by 16 to the power of its position. Do this from the farthest right digit (position 0)
to the farthest left digit (in the following example position 3). For example 058E in
hexadecimal will be 1422 in decimal.

Example:
Conversion of a hex value to a dec value

0 5 8 E hex
= 0 x 163 + 5 x 162 + 8 x 161 + E x 160
= 0 x 4096 + 5 x 256 + 8 x 16 + 14 x 1
= 1422 dec

Example:
Conversion of a dec value to a hex value

1422 : 163 = 0 => 1st position = 0 hex; carry 1422 dec
1422 : 162 = 5 => 2nd position = 5 hex; carry 142 dec
142 : 161 = 8 => 3rd position = 8 hex; carry 14 dec
14 : 160 = 14 => 4th position = E hex; carry 0 dec

result 1422 dec = 058E hex

Number in dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number in hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 175

176 11. Appendix Technical Data

Copyright © 2002, 2004 MARX® CryptoTech LP

Appendix C: Technical Data

CRYPTO-BOX USB
Connectors Type A Connector
Programming ROM configured by MARX
Data retention min. 10 years
Programming EEPROM typical more than 1 Million cycles;

100 000 guaranteed
Board Layout SMD
Microprocessor 8-Bit CMOS-micro-controller
Case Zinc - Ni plated
Storage temperature -40 ° F to +185 °F
Working temperature 32 ° F to +158 °F
Humidity 0 % bis 95 % rel. hum.
Dimensions 4/5” x1/3” x 1”, body:2/3” (12 X 8 X 29 mm, body 17 mm
Weight Versa and XS 0.326 oz (9.12 g)

XL 0.515 oz (14.6 g)

Memory 4-64kB

Admin password 2128 possibilities
Access control 2128 Security codes possible
User password 2128 possibilities
Algorithms supported AES/Rijndael, RSA, IDEA, MD4/5, Blowfish and more

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 176

177Model Types Appendix 11.

Copyright © 2002, 2004 MARX® CryptoTech LP

Features of CRYPTO-BOX USB models

USB
Versa

USB
XS

USB XL
 CRYPTO-BOX

U/VS U/XS U/XL

AES/Rijndael algorithm, fully implemented in hardware + + +

RSA (software implemented on driver level, RSA keys
stored inside the CRYPTO-BOX) - + +

Secure memory 4KByte 4-64KByte 4-64KByte

Unique serial number per device - + +

True White Noise Generator for random numbers - - +

Secure Key Container for passwords, certificates, digital
signatures, PKI, etc.

- + +

Low Total Cost of Ownership (TCO) + + +

Versatile, small size, LED indicator + + +

Programmable (ID codes and memory) + + +

Ideal for OEM usage - + +

Perfectly shielded against radiation + + +

Windows, Linux and Mac support + + +

Works with Terminal Server (Windows and Citrix) + (1) + +

License management in networks (1) LCS® LCS®

Remote programming with RFP + + +

Customer specific cases on request (e.g. with your
embossed company logo)

+ + +

(1) Network Floating License support

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 177

178 11. Appendix Technical Data

Copyright © 2002, 2004 MARX® CryptoTech LP

CRYPTO-BOX 560/Net and Versa

Connectors DB 25 on both sides
Daisy chaining 3 modules and more
Programming ROM ready to use (configured by MARX)
Data rentention 10 years
Programming EEPROM typical more than 1 million cycles;

100 000 guaranteed
Board layout SMD
Microprocessor 8-Bit CMOS micro-controller with »Sleep-Modus«

(low power consumption) and „turbo modus“
Case Macrolon from BAYER, non inflammable; recycling class PE4
Storage temperature -13° F to +176° F (-25° C to +80° C)
Working temperature 41° F to 167° F (+5° C to +75° C)
Humidity 10 % to 80 % rel. hum.
Dimensions 1-15/16” x 2-1/16” x 11/16” (49 x 53 x 17 mm)
Weight 1.286 oz (36 g)

Memory
Net560 512 bytes user-memory, 483 bytes programmable
Versa 64 bytes user-memory, 50 bytes programmable

Master password 240 possibilities
Access control 224 security codes possible
ID-Code 216 possibilities

Number of ID-Codes
Net560 8
Versa 4

Developer-ID 224 possibilities

Algorithms supported AES/Rijndael, RSA, IDEA, MD4/5,
Blowfish, and more (opt.)

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 178

179Technical Data Appendix 11.

Copyright © 2002, 2004 MARX® CryptoTech LP

CRYPTO-BOX Serial CBS3/9-Pin

Connectors DB9 on both sides
Programming ROM configured by MARX
Data retention min. 10 years
Programming EEPROM typical more than 1 million cycles;

100 000 guaranteed
Board layout SMD
Microprocessor 8-Bit CMOS micro-controller
Case Plastic, ABS
Storage temperature -40° F to 185° F (-40 °C to +85 °C)
Working temperature -4° F to 158° F (-20 °C to +70 °C)
Humidity 0 % to 95 % rel. hum.
Dimensions 9/16” x 1 3/16” x 1 5/16” (16 x 30 x 50 mm)

Memory 4-64KByte
Weight 0.775 oz (21.7 g)

Admin password 2128 possibilities
Access control 2128 Security codes possible
User password 2128 possibilities
Algorithms supported AES/Rijndael, RSA, IDEA, MD4/5, Blowfish and more

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 179

180 11. Appendix Overview Technical Data

Copyright © 2002, 2004 MARX® CryptoTech LP

CBU
(USB)

560/Net
(parallel)

Versa
(parallel)

Serial
(9-pin)CRYPTO-BOX

U/XS U/VS CBN CBV CBS

Windows
XP/2000/NT4/Me/
9x/3.x, DOS supported

+ +
(WinXP/2K/Me/98 + NT4)

+ + +

Automatic Windows/
DOS Integration

+ +
(Windows)

+ + +
(Windows)

Professional Protection
Kit (PPK)

+ + + + +

Network support
1 CBU per
network (1)

1 CBN per
network

1 CBV per
customer

1 CBS per
network (3)

Linux/UNIX/Solaris-
support

+ + - - +

Apple (MacOS 8/9/X) + - - - -
AES-Rijndael crypto
algorithm

+ + + (2) + (2) +

Pre-programmed with
customer codes

+ + + + +

Variable crypto
algorithm

+ + + + +

Hash function + + + + +

Unique serial number + - - - +

LCS® – License Control
System

+ - + - + (3)

RFP – Remote Field
Programming

+ + + + +

MAAS – Multiple Appli-
cation System

+ + + + +

RSA (software
implementation)

+2) - + (2) + (2) + (2)

Memory
4 – 64
kBytes

4
 kBytes

560 Bytes 64 Bytes 4 – 64
kBytes

Programmable,
also via Internet

+ + + + +

(1) Floating License; (2) implemented in software; (3) in preparation.

CRYPTO-BOX Technical Data and Overview

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 180

181Supported Compilers Appendix 11.

Copyright © 2002, 2004 MARX® CryptoTech LP

Supported Compilers (MPI based samples)

These compilers are fully supported via MPI library, samples are available on the
PPK-MPI CDROM.

Alaska Xbase++ Microsoft C# (.NET Environment)
Apple Project Builder C/C++ MS Visual Basic WIN
Borland Delphi Visual Basic .NET
C++Builder (Borland) Visual C/C++
Clipper Visual Fortran
Java Visual Foxpro
Kylix Visual Java
Metrowerks Code Warrior (Win + Mac) Watcom C/C++ 11.0

Supported Compilers (legacy samples)

These compilers are supported via our legacy API for the CRYPTO-BOX 560/Net
and Versa (parallel). Samples are available on request, please contact our
Technical Support.

Borland C/C++ Microsoft C/C++
Borland Pascal Microsoft Cobol
dBASE IV/5/5.5/7.5/dB2K Microsoft Assembler (MASM)
Foxpro 2.5/2.6/3.0 MS Basic 7.1 PDS
GNU C++ MS Fortran Power Station
IBM CSet 2++ (OS/2) MS Pascal
Lahey Fortran MS Quick Basic
Logitech MODULA MS Visual Basic DOS
Macro-Assembler NDP C
Metaware High C/C++
MicroFocus Cobol

Appendix D: Supported Compilers and Applications

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 181

182 11. Appendix Supported Applications

Copyright © 2002, 2004 MARX® CryptoTech LP

Asymetrix Toolbook
AutoCAD
Citrix Metaframe /
Windows 2000 Terminal Server
CLARION
LabVIEW
Lotus Notes
Macromedia Director
Microsoft.NET
Microsoft Access

Microsoft Excel
Microsoft Outlook
Microsoft Word
PARADOX
PDF and HTML format
SQL Windows
Virtual PC 4 for MacOS
WINDEV (French)

Supported Applications

Dynamic Link Library (DLL) for Windows XP/2000/Me/9x/3.1x and OS/2
Novell Loadable Module (NLM) for Novell NetWare 3.x/4.x/5.x
DOS-Extender (Pharlap, DOS/4GW, Exospace etc.)

Please contact us if you need support for other applications! In most
cases we will find a solution for you.

Supported Standards and Interfaces

MS CAPI (Microsoft Crypto-API)
MPI (MARX proprietary programming interface, including support for legacy ports)
TEOS (Token Embedded Operating System by MARX)

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 182

183Distributors Appendix 11.

Copyright © 2002, 2004 MARX® CryptoTech LP

Appendix E: Distributors

USA
MARX Software Security
2900 Chamblee Tucker Rd. N.E.
Building 9
Atlanta, GA 30341
USA
www.marx.com

Germany
MARX Software Security GmbH
Vohburger Str. 68
D-85104 Wackerstein
Germany
www.marx.com

Italy
CS Computers S.r.l.
Via Indipendenza, 4-12
I-47033 Cattolica (FO)
Italia
www.cscomputers.it

Poland
Microplan Polska Sp. z o.o.
Polwiejska 3
PL-61-885 Poznan
Polen
www.microplan.pl

Sales: sales@marx.com
Support: support@marx.com
Phone: (+1) 770-986-8887
Fax: (+1) 770-986-8891
E-Mail: info@marx.com

Sales: sales-de@marx.com
Support: support-de@marx.com
Phone: (+49) 8403 9295-0
Fax: (+49) 8403 1500
E-Mail: contact-de@marx.com

Sales: Giorgio del Bene
Phone: (+39) 541/963.801
Fax: (+39) 541/953.847
E-Mail: cscomp@cscomputers.it

Sales: Gregor Bigos
Phone: (+48) 61 8518916
Fax: (+48) 61 8518774
E-Mail: big@microplan.pl

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 183

184 11. Appendix Rijndael-Algorithm

Copyright © 2002, 2004 MARX® CryptoTech LP

Figure: F.1
RIJNDAEL ALGORITHM

Winner of “Global
Information

Security Competition”,
implemented in the

CRYPTO-BOX® USB and
CrypToken®

Appendix F: The AES/Rijndael algorithm

The communication between the CRYPTO-BOX USB, the driver, and the RAM data
is internally encrypted.
The key supports Rijndael algorithm hardware encryption working in Output
Feedback Bit stream mode (OFB). For the data encryption, the user can select the
Fixed Key and Initialization Vector (Provided by MARX - KF, IVF) or he can define his
own Session Key and Initialization Vector (KS, IVS).

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 184

185Rijndael Algorithm Appendix 11.

Copyright © 2002, 2004 MARX® CryptoTech LP

Rijndael data encryption formula was named by the U.S. National Institute of
Standards and Technology as the winner of a three-year competition involving
some of the world's leading cryptographers.

The effort to establish the AES (Advanced Encryption Standard) reflects the
dramatic transformation that cryptography has undergone in recent years.
Hundreds of encryption products currently employ DES or Triple DES, and such
systems have become almost ubiquitous in the financial services industry.
Consequently, the selection of the AES may affect millions of consumers and busi-
nesses.

Most valuable is Rijndael's combination of security, performance, efficiency, ease of
implementation and flexibility make it an appropriate selection for the AES.
Specifically, Rijndael is consistently a very good performer in both hardware and
software across a wide range of computing environments regardless of its use in
feedback or non-feedback modes. Its key set-up time is excellent, and its key agi-
lity is good. Rijndael's very low memory requirements make it very well suited for
restricted-space environments, in which it also demonstrates excellent performan-
ce. Rijndael's operations are among the easiest to defend against power and
timing attacks.

The block cipher Rijndael is designed to use only simple whole-byte operations.
Also, it provides extra flexibility over that required of an AES candidate, in that both
the key size and the block size may be chosen to be any of 128, 192, or 256 bits.

Detailed information
about Rijndael can be
obtained from:
http://csrc.nist.gov/
encryption/aes/

Note

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 185

186 11. Appendix Glossary

Copyright © 2002, 2004 MARX® CryptoTech LP

Appendix G: Glossary

Access codes
A set of codes (passwords) required to access
a CRYPTO-BOX.

AES/Rijndael
Advanced Encryption Standard. The Rijndael
data encryption formula was named by the
U.S. National Institute of Standards and
Technology as the winner of a three-year
competition involving some of the world's
leading cryptographers. Used in our products
CRYPTO-BOX USB and CrypToken.

API
Application Programming Interface is a set of
routines a program can call in a function
library or in the operating system.

Arguments
Parameters passed to function calls. The
arguments contain data required by functions
to execute correctly.

Authentication
The establishing of identity of a person or
process. Authentication helps to verify that a
request came from a genuine source.

AutoCrypt Wizard
automatic protection for programs, provides
compression feature, similar to ZIP. Makes
applications tamper-proof and reduces size.
No source code required.

Binary shell
See "Wrapper".

Citrix
This system provides similar to Windows
Terminal Server a server-based access to virtu-
ally any application, across any type of net-
work connection to any type of client (plat-
form independent). Citrix Metaframe is sup-
ported by the CRYPTO-BOX system.

Code injector
See "Wrapper"

Compression
AutoCrypt Wizard, our solution for automatic
protection of exe-files provides compression
(similar to Zip). Makes applications tamper-
proof and reduces size. No source code requi-
red.

Counter
A value used for monitoring the total number
of program execution, access times, etc. A
counter might be either incrementing or
decrementing.

CRYPTO-BOX®

A device attached to a user's computer
through USB, parallel or serial ports.
This hardware key is mostly used for software
protection purposes. Every CRYPTO-BOX has
a microprocessor, which provides secure
access to the contents of its memory.
CRYPTO-BOXes are used to hold any kind of
sensitive information, like personal identifica-
tion data, expiration dates, licenses, etc.

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 186

187Glossary Appendix 11.

Copyright © 2002, 2004 MARX® CryptoTech LP

CrypToken®

Hardware key from MARX with USB-connec-
tor, AES/Rijndael algorithm, on-board True
Physical Noise Generator (optional) and RSA
support for encryption, authentication, PKI
solutions, etc.

DES
Former Data Encryption Standard. A crypto-
graphic algorithm; U.S. Government specifi-
cation for encryption. Expired and frequently
broken.

Device Driver
Software component that extends the opera-
ting system of a computer so that CRYPTO-
BOX keys or other devices can be accessed.

Digital Signature
A digital signature is an electronic equivalent
of an individual's signature. It authenticates
the message to which it is attached and vali-
dates the authenticity of the sender. In addi-
tion, it also provides confirmation that the
contents of the message to which it is atta-
ched, have not been tampered with.

DoD
Department of Defense, issuer of standards
for data management in the domain of mili-
tary (DoD 5015, CALS, etc.).

Dummy call
A function call which drives the intruder into
believing that this is a task-critical call.
Dummy calls are useful for misleading poten-
tial pirates and hackers.

Emulation
One system emulates another when it per-
forms in exactly the same way. Emulation
typically allows the developer to single step a
piece of software and examine the execution
flow.

Encryption
A way to represent data in a ciphered form to
prevent unauthorized accesses to it by an
intruder.

ESD
Electronic Software Distribution is supported
by the CRYPTO-BOX system.

Expiration Date
Date after that a protected application can-
not be launched anymore.

Function call
A definition of an application programming
interface (API) call, its parameters and return
value (if any). After the call is executed, the
control is passed back to the calling process.

Hardware key
See "CRYPTO-BOX".

Hash-function
A Hash-function compresses data in a special
way, which is irreversible. It can be used to
create an electronic counterpart of a pass-
word or fingerprint, which can be transmitted
over an unsecure way without having fear of
spying/hacking.

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 187

188 11. Appendix Glossary

Copyright © 2002, 2004 MARX® CryptoTech LP

Hexadecimal values
A value based on the number 16. Example:
the number 32 is represented by hex 20

IDEA algorithm
An encryption algorithm, considered to be
among the best and most reliable ones. It
operates on 64-bit blocks with a 128-bit key.

Kernel
The essential part of an operating system,
responsible for resource allocation, low-level
hardware interfaces, security, etc.

License management
A system used to define and control the total
number of concurrent users in a LAN.

Licensing
Granting permission to use intellectual pro-
perty on a software product marketed by the
licensee in exchange for payment.

LPT port
See "Parallel port"

Microprocessor
An electronic chip which controls all interac-
tion with the CRYPTO-BOX and processes
data flow.

MPI
MARX Programming Interface. An easy-to-
use API that provides one common interface
for CRYPTO-BOXes.

Multitasking
The concurrent operation by one central pro-
cessing unit of two or more processes.

.NET technology
Microsoft .NET is a set of Microsoft software
technologies which enable users to interact
with a broad range of smart devices via the
Web, while ensuring that the user, rather
than the application, controls the interaction.

Noise Generator
Generates random numbers from a thermal
noise, used for encryption, digital signing and
security protocols. A True White Noise
Generator is used in our product CRYPTO-
BOX USB XL.

Novell
Vendor of software for local area networking
(Netware) and other network computing pro-
ducts. The CRYPTO-BOX Server (CBNetServer)
supports Netware.

Parallel port
A connector on a computer where data is
transmitted in or out in parallel (more than
one wire). The most widespread type of
parallel port is a printer port like Centronics,
which transfers eight bits at a time.

Pay-per-Use
In the TV broadcasting arena it's already com-
monplace: If a customer wants to see a parti-
cular program, he must pay to do so. The
same can apply to software distribution.
Rather than paying for the application, he
pays for the number of program starts, for
the amount of time he uses the software, or
for the functionality that he works with. In
short: Intensive users pay more.

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 188

189Glossary Appendix 11.

Copyright © 2002, 2004 MARX® CryptoTech LP

Piracy
Unauthorized duplication, use and distribu-
tion of computer software and/or related
material.

PKCS#11
Cryptographic Token Interface Standard.
This standard specifies an API, called
Cryptoki, to devices which hold cryptographic
information and perform cryptographic func-
tions.

PKI
Public Key Infrastructure defines the rules and
organizational background that allows to
deploy security services based on encryption.

Protective shell
See "Wrapper".

Rijndael
See "AES/Rijndael"

RSA
Most widely deployed public-key algorithm

S/MIME
Secure Multi-Purpose Internet Mail
Extensions. SMIME is a secure version of the
MIME protocol. By secure is meant that
SMIME is used to encrypt and decrypt e-mail.
The newest versions of MS Internet Explorer
and Netscape include SMIME software.

Seed
A parameter that changes the result of an
encryption or decryption process.

Serial port
A connector on a computer to which you can
connect peripherals that communicate with
the help of a bit-stream protocol. External
devices are connected either through 9-pin or
25-pin connectors.

Smart card
An electronic device that is the same size as a
regular plastic wallet card with a microchip
which ensures secure access to the card and
performs data processing. Smart cards can
store a person's credentials, account informa-
tion, network licenses, etc.
Disadvantage: requires card reader.

Source code
The form in which a computer program is
written by the programmer. A compiler or an
interpreter must translate the source code
into the object code for a particular computer
before the code can be executed.

TEOS
Token Embedded Operating System. TEOS is
a new "operating system" specially tailored
to the features of the CRYPTO-BOX USB and
CrypToken. TEOS allows you to run several
applications concurrently and independently
on a single security token. This is achieved
through intelligent file management and a
sophisticated programming interface.

Token
Part of a two-factor authentication system to
prove a user is who he is supposed to be. A
token is a hardware (e.g. CrypToken from
MARX) or software device that is used in con-
junction with a password login.

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 189

190 11. Appendix Glossary

Copyright © 2002, 2004 MARX® CryptoTech LP

Trialware
A software product used for a certain dura-
tion. As a rule, trialware has an expiration
date after which the user has either to pur-
chase the full version of the product or quit
using it.

USB port
Universal Serial Bus, provides much higher
data transfer rates than a serial or parallel
port and allows to connect up to 127 devices.
The USB port is supported by the models
CRYPTO-BOX USB "Versa", "XS" and "XL".

White Noise Generator
See "Noise Generator"

Wrapper
Code which is combined with another piece
of code to determine how that code is exe-
cuted. A wrapper can be used for compatibi-
lity or security reasons (e.g. to prevent the cal-
ling program from executing certain func-
tions). Realized in AutoCrypt Wizard. Our
Wrapper also provides compression (similar to
Zip).

X.509
Most widely deployed standard for digital
certificates, agreed by CCIT and ISO.

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 190

191Trademarks Appendix 11.

Copyright © 2002, 2004 MARX® CryptoTech LP

Appendix H: Trademarks

MARX®, CRYPTO-BOX® USB, CRYPTO-BOX® 560, CRYPTO-BOX® Versa,
CrypToken®, LCS®, CRYPTO-WIZARD®, CRYPT:ACCESS®, FILE:CRYPT®, CD-
ROM VENDOR SECURITY®, TOKEY™ and AudioVideo RTE™ are trademarks or
registered trademarks of MARX.

Microsoft®, Windows Server™ 2003 and Windows NT® are registered trademarks
of Microsoft Corporation in the United States and other countries.

IBM® is a registered trademark of International Business Machines Corporation in
the United States, other countries, or both.

Java™ or all Java-based trademarks and logos, and Solaris™ are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Mac OS® is a trademark of Apple Computer, Inc., registered in the United States
and other countries.

Novell®, NetWare® and IPX/SPX® are registered trademarks of Novell, Inc. in the
United States and other countries.

UNIX® is a registered trademark in the United States, other countries, or both and
is licensed exclusively through X/Open Company Limited.

The term "Linux" is a registered trademark of Linus Torvalds.

AutoCAD® and AutoLISP® are registered trademarks of Autodesk, Inc., in the
United States and/or other countries.

Asymetrix® and ToolBook® are registered trademarks of Asymetrix Learning
Systems, Inc. in the United States and other countries.

Macromedia® Director® is a trademark of Macromedia, Inc. in the United States
and/or other countries.

Other company, product, or service names may be trademarks or service marks of
their respective holders.

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 191

192 11. Appendix Developer’s Agreement

Copyright © 2002, 2004 MARX® CryptoTech LP

Appendix I: Developer´s Agreement

All products that MARX® Software Security delivers to you, including documenta-
tion, software, hardware, diskettes, evaluation kits, etc. (referred to as "MARX pro-
ducts" below) are subject to the terms stated below. All future orders will be
based on these terms as well. If you disagree with these terms, please return the
MARX products to us, postage prepaid, within seven days of receipt, and we will
provide you with a refund.

1. MARX gives a warranty of 3 years from the date of delivery according to MARX
general terms of business. This warranty is limited to significant defects in materi-
al and workmanship of the MARX products detected under normal use. Warranty
claims must be made in writing during the warranty period. The documentation
must contain a description of the defect and include sufficient proof for the defect
detected in a MARX product.
2. If you receive defective MARX products, MARX's sole obligation is to repair or
replace, at MARX's choice, any MARX product free of charge. Any replaced parts
shall become MARX's property.
3. MARX is not responsible for any delays in delivery. MARX's entire liability for any
damages to you or another party for any cause shall not exceed the price of the
MARX product that caused the damage. MARX will in no event be liable for any
damages caused by your failure to perform your obligations, or for any loss of data,
profits, savings or any other consequential and incidental damages, even if MARX
has been advised by you that such damages may be possible, or for any claims by
you based on any third-party claim.
4. You may not try to copy, reproduce, or reverse-engineer any part of the MARX
products, except as allowed in item 5 below.
5. You may make archive copies of the software. You may modify the demo pro-
grams supplied with the evaluation kit and link the libraries supplied to your soft-
ware. If necessary, you are allowed to ship parts of the software (e.g., WINDOWS-
DLL) to third party users with your software for the sole purpose of protecting your
software.
6. EXCEPT AS STATED ABOVE, THERE IS NO OTHER WARRANTY, CONDITION OR
REPRESENTATION REGARDING MARX'S PRODUCTS, SERVICES OR PERFORMANCE,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 192

193Notice to users Appendix 11.

Copyright © 2002, 2004 MARX® CryptoTech LP

Notice to users

All attempts have been made to make the information in this document complete
and accurate. MARX is not responsible for any direct or indirect damage or loss of
business resulting from inaccuracies and omissions. The specifications contained in
this document are subject to change without notice. All product and company
names used in this document are trademarks or registered trademarks of their
respective holders. MARX products generate, use and can radiate radio frequency
energy. If not installed and used in accordance with the instructions, they may
cause interference to radio communications. MARX products have been tested and
found to be harmless for residential electrical installations. However, we cannot
guarantee that interference with radio communications will not occur in a particu-
lar installation. If you hear or see interference with radio or TV reception that you
think may be caused by a MARX device, determine whether the interference
comes from the device by connecting it to your computer and disconnecting it
again. We encourage you to try to correct the interference using one of the follo-
wing measures:

• Relocate or re-orient the radio/TV antenna.
• Locate the computer and the receiver in different rooms.
• Plug the computer and the receiver into different electrical outlets.
• Consult a radio/TV technician for help.
• Operation with unshielded cables is likely to result in interference of radio and

reception.

The user is cautioned that modifications and changes made to a MARX device
without the manufacturer's approval could void the authority to operate this devi-
ce. This device has been found to be harmless for residential electrical installations.
However, we cannot guarantee that interference with radio communications will
not occur in a particular installation.

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 193

194 11. Appendix

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Appendix.qxp 3/11/2004 2:05 PM Page 194

195Index 12

12. Index

.NET 181, 182, 188

A
Access Codes 108, 147, 186
Activation code 72, 73
AES/Rijndael 28, 50, 91, 103, 176
Alaska Xbase++ 181
Anti-debugging 96, 97
Anti-disassembling 96
API 186, 187, 188, 189
Apple MacOS 87
Apple Project Builder C/C++ 181
Arguments, function calls 186
Asymetrix Toolbook 182
Authentication 59, 186
AutoCAD 182
AutoCrypt Wizard 41, 70, 173
Automatic Softw. Protection 41

B
Barcode 36
Beta testing programs 21
Binary shell 186
Blowfish 91
Borland C/C++ 181
Borland Delphi 181
Borland Pascal 181

C
C# 181
C++ 181
C++Builder (Borland) 181
CBNET server 47, 107, 160
CBNetServer 68, 69, 107
CBProg 45, 56, 61, 63, 69, 70
CBS3/9-Pin 179
CBSetup 79, 80, 82, 83

Checksums 92
CITRIX 60, 87, 182, 186

Citrix Metaframe 182
CLARION 182
Clipper 181
Code Warrior 181
Compression 48, 95, 186
Counter 186
CRYPTO-BOX 87
CRYPTO-BOX 560/Net 32, 33, 81, 82
CRYPTO-BOX Card 23, 84
CRYPTO-BOX ID codes 61
CRYPTO-BOX Serial 33, 34, 77, 83
CRYPTO-BOX USB 28, 78
CRYPTO-BOX Versa 33, 81
CRYPTO-BOX Serial 179
CrypToken® 184, 186, 191
Customer-specific solutions 36

D
Data matrix code 36
Data objects 37, 94, 148
dBASE IV/5/5.5/7.5/dB2K 181
Debugger 50, 51
Decryption 113, 118, 134, 163
DES 185, 187
Developer ID 112, 138, 146
Device Driver 77, 187
Digital signature 32, 187
Disassembly 103
Distribution 77, 83
DLL 78, 79, 81, 83, 84
DoD 187
Downloads, support 35
DOS 37, 90, 181
DRM, Digital Rights Mgmt. 85

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Index.qxp 3/11/2004 2:06 PM Page 195

196 12 Index

DrvVersion 139
Dummy calls 93, 187

E
Embedded systems 87, 90
Emulation 187
Encryption 37, 112, 162
Encryption key 112, 162
Error codes 113
ESD, Electronic Sw Distr. 3, 5, 187
Evaluation period 4, 9, 12
Execution counter 37, 49, 50, 58
Expiration date 37, 49, 107, 148

F
Fixed Key 119
Foxpro 2.5/2.6/3.0 181
Function call 187

G
GNU C++ 181

H
Hardware key 186, 187
Hash function 32, 140
Hash value 112, 140, 141
HashBuffer 140, 141
HashBufLength 140
Hash-function 187
Hexadecimal values 187
HTML-Format 182

I
IBM CSet 2++ (OS/2) 181
ID codes 150, 165, 167
IDA Pro Debugger 96, 103
IDEA algorithm 91, 119, 128, 188
Identifier 109
IRM, Information Rights Mgmt. 85

Internet download 7
Internet Explorer 189

J
Java 181

K
Kernel 188
Kylix 181

L
Labview 182
Lahey Fortran 181
Legacy ports 182
License Activation Wizard 6, 8
License Control System 24, 61,
License counter 61, 63, 68, 69, 70
License management 188
Linux 87, 89, 90
Logitech Modula 181
Lotus Notes 182
LPT port 188

M
MAAS 22, 45, 74
MacOS 87, 90
Macro-Assembler 181
MacroMedia Director 85, 182
Managed components 89
Marketing strategy 7
MARX algorithm 91, 119
MARX Data Objects 105
MARX Distributors 183
MARX Programming Interface (MPI) 21, 59
MarxProbe 64
MD4_ALGORITHM 140
Metaware High C/C++ 181
Metrowerks Code Warrior (Win + Mac) 181
MicroFocus Cobol 181

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Index.qxp 3/11/2004 2:06 PM Page 196

197Index 12

Microprocessor 176, 188
Microsoft .NET 89
Microsoft Access 182
Microsoft Assembler (MASM) 181
Microsoft C# (.NET-Umgebung) 181
Microsoft C/C++ 181
Microsoft Cobol 181
Microsoft Outlook 182
Microsoft Word 182
MPI 188
MPI Function calls 106, 110, 117
MPI_Channel 157
MPI_Close 117
MPI_Decrypt 122
MPI_DecryptEx 118, 122
MPI_Encrypt 128
MPI_EncryptEx 124, 128,
MPI_EraseEncryptionKey 130
MPI_ErasePassword 132
MPI_GenerateKeyPairRSA 134
MPI_GetBoxInfo 136
MPI_GetBoxType 137
MPI_GetDeveloperId 138
MPI_GetDrvVersion 139
MPI_GetHash 140
MPI_GetLastError 142
MPI_GetLicenseInfo 143
MPI_GetNetworkParameter 144
MPI_GetRandomSequence 145
MPI_GetSerialNr 146
MPI_Open 109, 117, 139, 142, 147
MPI_ProcessDataObject 148
MPI_ReadID 150
MPI_Readmem 151
MPI_SearchFirst 105, 117,
MPI_SearchNext 117, 139
MPI_SampleFunction 116
MPI_SetChannel 157
MPI_SetNetworkParameter 107,

MPI_SubmitEncryptionKey 118
MPI_SubmitPassword 105, 117
MPI_SubmitPasswordEx 167
MPI_WhatIsAvailable 169
MPI_WriteMem 171
MS Basic 7.1 PDS 181
MS CAPI 182
MS Fortran Power Station 181
MS Pascal 181
MS Quick Basic 181
MS Visual Basic DOS 181
MS Visual Basic WIN 181

N
NDP C 181
NetBIOS 60
NetWare 182, 188
Network licenses 47, 61, 63, 70
Noise Generator 186, 188, 190
Novell 87, 182, 188, 191
Novell NetWare 38, 60

O
OEM solutions 25
Output Feedback Mode 29

P
PARADOX 182
Parallel port 188, 189
Password Manager 30
Pay-per-Use 15, 16
PDF 85, 182
Periodic check 50, 51
Piracy 188
PKCS#11 189
PKI 186, 189
Power Basic 181
PowerBuilder 5.01 181
Private Key 119

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Index.qxp 3/11/2004 2:06 PM Page 197

198 12 Index

Professional Protection Kit (PPK) 38, 39
Public Key 119

Q
QNX 60, 87, 89
Quick C 181
Quickstart 41

R
Random generator 29, 92, 145
REALIA Cobol 181
Remote Programming 14, 24, 68
Return Codes 113
Rijndael algorithm 119, 120, 125
RSA 91

S
S/MIME 189
Secure Compress 52
Serial Evaluation Kit 173
serial number 29, 30, 112, 138, 146
Serial port 189
Session Key 119
Shell, protective 189
Site Licensing 13
Smart card 187, 189
SoftICE 96, 97, 98
Software Leasing 15
Software Protection 41, 105
Solaris 60, 87, 89
SourceBuffer 119
SourceBufLength 140
SPBase 181
SQL Windows 182
static libraries 78, 83
SUN Solaris 87, 89
Support 35
Symantec C/C++ 181

T

TCP/IP 47, 60
Technical Data 176, 178, 179, 180
Technical support 35
TEOS 37, 38, 60, 189
Terminal Server 60
Token 189
TOKEY 30
Tracing 103
Trademarks 191, 193
Transaction key 72, 73
Trialware 189
Triple DES 185
Troubleshooting 64
True Physical Noise Generator 28
TRW2000 96
Turbo Basic 181
Turbo C/C++ 181
Turbo Debugger 96
Turbo Pascal 181
Two-factor authentication 3

U
UNIX 87, 89, 90
Usage Counter 107, 114
USB port 189

V
Virtual PC for MacOS 182
Visual C/C++ 181
Visual Fortran 181
Visual Foxpro 181
Visual Java 181
Visual Objects (CA) 18

W
Watcom C/C++ 9.5/10.5/11.0 181
Watcom Fortran 181
White Noise Rand.Gen. 28

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Index.qxp 3/11/2004 2:06 PM Page 198

199.Index 12

WIN Kernel Debugger 97
WINDEV 182
Windows, supported versions 37
Windows 2000/2003 Term. Server 87
Wrapper 18

X
X.509 22, 190

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04(MPI_Manual.qxp
(0-01MAR04(MPI_Manual.pdf)

0-01MAR04_ks(PPK_MPI_Index.qxp 3/11/2004 2:06 PM Page 199

200 12 Index

Copyright © 2002, 2004 MARX® CryptoTech LP

0-01MAR04_ks(PPK_MPI_Index.qxp 3/11/2004 2:06 PM Page 200

Software Security
Establish secure distribution channels
and assure revenue for every license!
Includes automatic protection of
Windows applications and manual
implementation of your custom
protection strategies for Windows,
MacOS, Linux, UNIX, Solaris and more.

Web Security
Secure Authentication, Online
Identification and Access Control for
all users. Restrict and allow login into
your web site, your subscription
service or any kind of online business!

0-
01

M
A

R0
4(

M
PI

_b
ac

k.
qx

p

Data Protection
Secure distribution of documents (Office,
PDF, Macromedia Director files). Protect
your valuable digital content with the
CRYPTO-BOX and limit access to authori-
zed users only. Ideal for distribution via
Internet and CDROM.

AudioVideo RTETM

Protection of digital media (video and
audio) from piracy and unauthorized
duplication with the
CRYPTO-BOX USB.

- AES/Rijndael algorithm, implemented in hardware
- 4-64 kByte secure memory - ideal for certificates, passwords, ...
- Low profile designer metal case
- Shielded against radiation, water resistant
- Support for MS-CAPI (Crypto-API)
- For Windows, MacOS, Linux, UNIX, Solaris, ...
- TEOS (Token Embedded Operating System)
- OEM versions available - more on request

CRYPTO-BOX® USB and CrypToken® USB

[actual size]

www.marx.com

Securing the Digital WorldSM

MARX Software Security
2900 Chamblee Tucker Rd. N.E., Building 9
Atlanta, GA 30341 USA
Tel.: (+1) 770-986-8887
Fax: (+1) 770-986-8891
info@marx.com

0-01MAR04_ks(PPK_MPI_BackCover.qxp 3/11/2004 1:43 PM Page 1

